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Can you guess?

Suppose I give you a sequence: 1,

1, 1, 1, 1, 1,

What comes next?

It is probably going to be 1.
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Can you guess?

Suppose I give you a sequence: 1,1, 1, 1, 1, 1,

What comes next?

It is probably going to be 1.
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Can you guess?

What about this one: 1,

2, 3, 1, 2, 3,

It is probably going to be 1 again.

But it could very well have been part of

. . . , 4, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 4, . . .

in which case it should have been 4.
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Can you guess?

What about this one: 1,2,

3, 1, 2, 3,

It is probably going to be 1 again.

But it could very well have been part of

. . . , 4, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 4, . . .

in which case it should have been 4.
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Can you guess?

What about this one: 1,2, 3,

1, 2, 3,

It is probably going to be 1 again.

But it could very well have been part of

. . . , 4, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 4, . . .

in which case it should have been 4.
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Can you guess?

What about this one: 1,2, 3, 1,

2, 3,

It is probably going to be 1 again.

But it could very well have been part of

. . . , 4, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 4, . . .

in which case it should have been 4.
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What about this one: 1,2, 3, 1, 2,

3,

It is probably going to be 1 again.

But it could very well have been part of

. . . , 4, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 1, 2, 3, 4, . . .

in which case it should have been 4.
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Be careful with your guesses.

We know that without enough information about how the
sequence comes about there is not much point in guessing.

But what if instead I give you the entire past of the sequence and
tell you before hand that the sequence is periodic. Then we can
always predict precisely.

Do we need to know the entire past to make this prediction?
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Be careful with your guesses.

We know that without enough information about how the
sequence comes about there is not much point in guessing.

But what if instead I give you the entire past of the sequence and
tell you before hand that the sequence is periodic. Then we can
always predict precisely.

Do we need to know the entire past to make this prediction?
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Predicting periodic sequences

Clearly, it would be enough to know the sequence along the even
integers because the restriction of periodic sequence to the even
integers is still periodic.

. . . , 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, . . .

?,×, 1,×, 3,×, 1,×, 3,×, 1,×, 3,×, . . .

Clearly it is not enough to know the sequence along the odd
integers.

?, 1,×, 3,×, 1,×, 3,×, 1,×, 3,×, . . .

We do not know after all which periodic sequences runs along the
odds.
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Can we cut down further?
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Predicting periodic sequences

A set Q ⊂N is called a PER-set if Q = {nk : k ∈N} for some
n ∈N.

A set P ⊂N is called a PER* if intersects every PER-set. In other
words PER-sets contain at least one multiple of every integer.

Even integers are PER* but odd integers are not PER*.
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Predicting periodic sequence

A set Q ⊂N is called a PER-set if P = {nk : k ∈N} for some
n ∈N.

A set P ⊂N is called a PER* if intersects every PER-set. In other
words PER-sets contain at least one multiple of every integer. Fix
such a P.

Suppose xi ; i ∈ Z is a periodic sequence with period p.

Now suppose that xi is constant for i ∈ P ∩ {nk : k ∈N} for
some n ∈N. But P is PER*. Hence it also contains a multiple of
np.

Hence we can decide what x0 is, given xi ; i ∈ P.
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In other words, a set can predict all periodic sequences if and only
if it is PER*.
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Discrete spectrum

This idea can be generalised to processes with discrete spectrum.
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Stationary Processes

A stationary process is a sequence of random variables
. . . , X−2, X−1, X0, . . . such that the distribution of

X0, X1, . . . , Xn

is the same as that of

Xk , Xk+1, . . . , Xk+n.

Our processes will always be finite valued unless otherwise
mentioned.
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What is discrete spectrum?

A stationary process with the shift map is said to have discrete
spectrum if it is isomorphic to the rotation of a compact abelian
group (with the Haar measure).
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Discrete spectrum

A process is said to have discrete spectrum if it is isomorphic to
the rotation of a compact abelian group (with the Haar measure).

For instance if xi ; i ∈ Z is a periodic point with periodic p then its
orbit (under the shift map), is isomorphic to the rotation of Z/pZ

by 1.

Circle rotations give another example.
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Rotations

Let T := R/Z denote the circle. Given x , α ∈ T we consider the
rotation x , x + α, x + 2α, . . ..

We split the circle into two parts [0, 1/2) and [1/2, 1). If the
point falls on the first part we record a 0 and if it falls on the
second half we record a 1.

Thus starting with a point x we get a sequence in 0 and 1.
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Rotations

01

Figure : Recording a circle rotation by 0 and 1:
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Rotations

x

01

Figure : Recording a circle rotation by 0 and 1: 0
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Rotations

x

x+α 01

Figure : Recording a circle rotation by 0 and 1: 0, 0

38 / 108



Rotations

x

x+α
x+2α

x+3α

x+4α

x+5α

01

Figure : Recording a circle rotation by 0 and 1: 0, 0, 1, 1, 1, 1
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DIS* sets

A set Q is called DIS-set if it there is a compact abelian group K ,
α ∈ K and open set 0 ∈ U ⊂ K such that

Q = {n ∈N : nα ∈ U}.

Every PER-set (the set of multiples of an integer) is a DIS-set for
the map r : Z/pZ→ Z/pZ given by

r(x) := x + 1.

A set P is called DIS* it it intersects every DIS-set.
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Predicting processes with discrete spectrum

Theorem

Let P ⊂N. We can predict X0 given Xi ; i ∈ P for all processes
Xi ; i ∈ Z with discrete spectrum if and only if P is DIS*.
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Let us now discuss more general processes.
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Deterministic Processes: Examples

A stationary process XZ is called deterministic if there is a
measurable function Φ : A−N → A such that

Φ(X−N) = X0

with probability one.

If a process is periodic almost surely, then it is deterministic.

In general, all processes with discrete spectrum are deterministic.

45 / 108



Deterministic Processes: Non-examples

A stationary process XZ is called deterministic if there is a
measurable function Φ : A−N → A such that

Φ(X−N) = X0

with probability one.

The process given by coin tosses is not deterministic.
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Predictive Sets

A set P ⊂N is called predictive if for all deterministic processes
XZ there exists a function Φ : A−P → A such that

Φ(X−P) = X0.
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Predictive Sets: Examples

A set P ⊂N is called predictive if for all deterministic processes
XZ there exists a function Φ : A−P → A such that

Φ(X−P) = X0.

Thus by definition N is a predictive set.
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Predictive Sets: Examples

A set P ⊂N is called predictive if for all deterministic processes
XZ there exists a function Φ : A−P → A such that

Φ(X−P) = X0.

Suppose N + k ⊂ P then P is predictive. Because then by
stationarity, X−P can predict X−k and hence X−k+1 and
subsequently X0.
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Predictive Sets: Non-examples

A set P ⊂N is called predictive if for all deterministic processes
XZ there exists a function Φ : A−P → A such that

Φ(X−P) = X0.

The set P of odd numbers cannot even predict periodic sequences;
it is not predictive.

50 / 108



In fact, there are weak-mixing zero-entropy processes XZ where X0

is independent of XP for the set of odd numbers P.

The proof goes via Riesz products and Gaussian processes.
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Even numbers

Are the even numbers predictive?

For this we need to introduce some entropy theory.
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Even numbers

Are the even numbers predictive?

For this we need to introduce some entropy theory.
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Entropy of random variables

Shannon revolutionised information theory in 1948 by bringing in a
host of new ideas and technology.

At the centre of this revolution was entropy.

For a random variable X taking values in the set A, the entropy of
X is given by

H(X ) := − ∑
a∈A

P(X = a) log(P(X = a))

assuming 0 log 0 = 0.
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Shannon Entropy

H(X ) := − ∑
a∈A

P(X = a) log(P(X = a)).

Clearly P(X = a) log(P(X = a)) ≥ 0. It is equal to 0 if and only
if P(X = a) = 1 for some a ∈ A.

Thus H(X ) = 0 if and only if it is completely determined.
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Shannon Entropy

H(X ) := − ∑
a∈A

P(X = a) log(P(X = a)).

On the other hand θ → − log θ is a convex function. By Jensen’s
inequality we have

H(X ) := − ∑
a∈A

P(X = a) log(P(X = a))

≤ log(∑
a∈A

P(X = a)

P(X = a)
)

= log(|A|)

with equality if and only if P(X = a) = 1
|A| for all a ∈ A.
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Shannon Entropy

Thus H(X ) = 0 if and only if X is deterministic and

H(X ) ≤ log(|A|) with equality if and only if X is uniformly
distributed.
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Shannon Entropy

Further H(X |Y ) := H(X , Y )−H(Y ) and similarly one can prove

H(X |Y ) = 0 if and only if X is a function of Y .
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Kolmogorov Sinai Entropy

For a process XZ, Kolmogorov Sinai entropy is defined by the limit

h(XZ) := lim
n→∞

1

n
H(X0, X1, . . . , Xn−1)

= lim
n→∞

1

n
(H(X0) + H(X1|X0) + . . . , H(Xn−1|Xn−2, . . . , X0)))

= lim
n→∞

1

n
(H(X0) + H(X0|X−1) + . . . , H(X0|X−1, . . . , X−n+1)))

= H(X0|X−1, X−2, . . .).

Thus h(XZ) = 0 if and only if H(X0|X−1, X−2, . . .) = 0 if and only
if X0 is a function of X−N.
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Back to the evens

XZ is deterministic if and only if h(XZ) = 0.
It is easy to see that

h(XZ) := lim
n→∞

1

n
H(X0, X1, . . . , Xn−1)

≥ lim
n→∞

1

n
H(X0, Xk , X2k . . . , )

≥ 1

k
h(XkZ).

Thus if XZ is deterministic then XkZ is also deterministic.

Caution: This is not true unless the state space is finite.
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Back to the evens

If XZ is deterministic then XkZ is also deterministic.

We know that N is predictive. Thus we have that kN is also a
predictive set.
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Some sufficient conditions.
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Return-time sets are predictive

Let (X , µ, T ) be a probability preserving transformation (ppt).
Given a set U ⊂ X of positive measure, we denote by

N(U, U) := {n ∈N : µ(T n(U) ∩ U) > 0}.

A set A ⊂N is called a return-time set if A = N(U, U) for some
ppt.

Theorem (Chandgotia, Weiss)

Return-time sets are predictive sets.
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Return-time sets are predictive

Theorem (Chandgotia, Weiss)

Return-time sets are predictive sets.

Note that kN is a return-time set for the transformation
T : Z/kZ→ Z/kZ given by T (i) = i + 1.

Thus we have generalised our former observation that kN is
predictive.
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Return-time sets are predictive

Theorem (Chandgotia, Weiss)

Return-time sets are predictive sets.

This theorem can be formally strengthened for return-time sets
coming from zero-entropy ppt. If (X , µ, T ) is a zero entropy ppt,
U ⊂ X with µ(U) > 0 and P is a predictive set then P ∩N(U, U)
is also a predictive set.

Question

Does every return-time set contain a return-time set of a
zero-entropy process?
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The intersection of a return-time set of a zero entropy
process and a predictive set is predictive

If (X , µ, T ) is a zero entropy ppt, U ⊂ X with µ(U) > 0 and P is
a predictive set then P ∩N(U, U) is also a predictive set.

It is easy to see that if α ∈ R/Z and ε > 0 then the set

{n : nα mod 1 ∈ (−ε, ε)}

contains a return-time set for U = (−ε/2, ε/2).

Thus if P is predictive then

P ∩ {n : nα mod 1 ∈ (−ε, ε)}

is also predictive.
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Results: SIP∗

Given a sequence s1, s2, . . . we write

SIP(s1, s2, . . .) := {
∞

∑
i=1

εi si : εi ∈ {−1, 0, 1}} ∩N.

A set P ⊂N is called SIP? if it intersects every SIP set.

Clearly one of the numbers of the type ∑∞
i=1 εi si is even for all

sequences s1, s2, . . . (either s1, s2 or s1 + s2 has to be even).

Thus the even numbers are SIP? and similarly kN for all k ∈N.

The odd numbers are not SIP?. They do not intersect the SIP
generated by even numbers.
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Results: SIP∗

Theorem

Predictive sets are SIP∗.

Given an SIP Q, we construct a weak-mixing process XZ for which
X0 is independent of XN\Q .

An easy consequence is that predictive sets P have bounded gaps
meaning N \ P cannot contain intervals of unbounded length.

Let us see why.
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SIP(s1, s2, . . .) := {
∞

∑
i=1

εi si : εi ∈ {−1, 0, 1}} ∩N.

Predictive sets intersect every SIP set.

Suppose P is a predictive set such that N \ P contains intervals of
unbounded length.

Then we can fit an SIP set in N \ P.
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Fitting SIP sets in N \ P if P has does not have bounded
gaps

P

s1 s2

s2-s1 s3-s2 s3+s2s2+s1

{ { {

s3
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Sufficient conditions for a set to be predictive:

Theorem (Chandgotia, Weiss)

Return-time sets are predictive sets.

Necessary conditions for a set to be predictive:

Theorem (Chandgotia, Weiss)

Predictive sets are SIP?.

The following question arises naturally.

Question

Are sufficient conditions necessary and necessary conditions
sufficient?

Let us give some partial answers.
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Are all SIP? sets predictive?

If P is a predictive set, ε > 0 and α ∈ R/Z then

{n ∈N : nα ∈ (−ε, ε)} ∩ P

is predictive.

Question

Is the intersection of two predictive sets also predictive? Is the
intersection non-empty?

Question

Let α ∈ R/Z be irrational and ε < 1/2. Is the set

{n ∈N : nα ∈ (0, ε)}

predictive?
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An uncertain theorem

Question

Let α ∈ R/Z be irrational and ε < 1/2. Is the set

{n ∈N : nα ∈ (0, ε)}

predictive?

If the answer is yes then we have two predictive sets

{n ∈N : nα ∈ (0, ε)} and {n ∈N : − nα ∈ (0, ε)}
which do not intersect.

Theorem (Akin and Glasner, 2016)

The set {n ∈N : nα ∈ (0, ε)} is SIP?.

Thus if the answer is no then we have a SIP? set which is not
predictive.
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So we don’t really know if all SIP? sets are predictive.
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There are predictive sets which do not contain return-time
sets.

Consider the set
Q = {n2 : n ∈N}.

For all i , k ∈N we have that if

n2 = −i + 3i2k = i(−1 + 3ik)

then since i and −1 + 3ik are prime to each other, they are perfect
squares.

But this is impossible because −1 + 3ik ≡ −1 (mod 3). Thus
N \Q contains −i + 3i2k ; k ∈N.
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There are predictive sets which do not contain return-time
sets.

Hence we have that

H(X−i | XN\Q) = 0

for all i ∈N.

But then for all i ∈ Z

H(Xi | XN\Q) = H(Xi | X(−N)∪(N\Q)) = 0.

But all return-time sets must intersect the set {n2 : n ∈N}
(Sarkozy, Furstenberg). Thus there are predictive sets which are
not return-time sets.
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Predictive sets

Question

Let {nk}k∈N be an increasing sequence such that nk+1 − nk is
also an increasing sequence. Prove that

H(X0 | XN\{nk | k∈N}) = 0.

We do not know this even in the case nk = k3. We will come back
to this later if time permits.
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Proofs.
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Return-time sets are predictive

Let (X , µ, T ) be a ppt and U ⊂ X have positive measure. We will
prove that

{n ∈N : µ(T n(U) ∩ U) > 0}

is predictive.

Using the ergodic theorem, it can be proved that these return-time
sets contain the difference set of a positive density set.

It is sufficient to prove that the difference set of a positive density
set is predictive.
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Return-time sets are predictive

Let Q = {q1 < q2 < q3 < . . .} have density

α = lim
n→∞

n

qn
> 0

and h(XZ) = 0.

Then

1

n
H(Xq1 , Xq2 , . . . , Xqn) ≤

qn

n

1

qn
H(X1, X2, . . . , Xqn)→

1

α
h(XZ) = 0.

But
1

n
H(Xq1 , Xq2 , . . . , Xqn) =

1

n
H(X0 | Xq2−q1 , Xq3−q1 , . . . , Xqn−q1)

+
1

n
H(X0 | Xq3−q2 , Xq4−q2 , . . . , Xqn−q2) + . . .

+
1

n
H(X0 | Xqn−qn−1)

≥ H(X0 | X(Q−Q)∩N)
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Return-time sets are predictive
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Return-time sets are predictive

Thus if Q has positive density then

H(X0 | X(Q−Q)∩N) = 0

and (Q −Q) ∩N is a predictive set. We showed earlier that every
return-time set contains such a set.

Thus return-time sets are predictive.
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Predictive sets are SIP?

In course of the proof we show that for all SIP(S) there exists a
weak mixing zero entropy Gaussian process XZ such that

X0 is independent of Xi for i ∈N \ SIP(S).

This shows that N \ SIP(S) is not predictive.

Thus there exists a weak-mixing process in which X0 can be
predicted by XN but is independent of X2N+1.
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Predictive sets are SIP?: Processes and Spectral measures

From here on we will assume that X0 is complex-valued, has zero
mean and finite variance.

Given any process XZ, the sequence E(X0Xn); n ∈N is a positive
definite sequence.

By Herglotz’s theorem, there exists a probability measure µ on
R/Z such that the Fourier coefficients

µ̂(n) = E(X0Xn).

On the other hand, given any probability measure µ on R/Z there
exists a Gaussian process XZ such that

µ̂(n) = E(X0Xn).
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Predictive sets are SIP?: Processes and Spectral measures

XZ

−→ E(X0Xn); n ∈N −→ µ on R/Z such that µ̂(n) = E(X0Xn).

µ on R/Z −→ Gaussian process XZ for which µ̂(n) = E(X0Xn).

If µ is singular then XZ has zero entropy (Newton and Parry).

For Gaussian processes X0 and Xn are independent if and only if
µ̂(n) = 0.

A Gaussian process XZ is weak-mixing if and only if µ is
continuous.
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Predictive sets are SIP?: Gaussian Processes

µ is singular then XZ has zero entropy.

For Gaussian processes X0 and Xn are independent if and only if
µ̂(n) = 0.

A Gaussian process XZ is weak-mixing if and only if µ is
continuous.
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Predictive sets are SIP?: Riesz products

Fix a sequence s1, s2, . . . ⊂N such that si+1 > 3si .

The Riesz product is the function fr : R/Z→ C given by

fr (x) := ∏
k≤r

(1 + cos(2πskx))

= ∏
k≤r

(
1 +

exp(2πiskx) + exp(−2πiskx)

2

)
.

As r tends to infinity the limit of frµLeb is a singular continuous
measure µ such that µ̂(n) = 0 for all

n /∈ SIP(s1, s2, . . .) :=

{
∑
t∈N

εi si : εi ∈ {−1, 0, 1}
}

.

Thus XZ has zero entropy, is weak mixing and E(X0Xn) = 0 for all

n /∈ SIP(s1, s2, . . .).
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Predictive sets are SIP?

Thus XZ has zero entropy, is weak mixing and E(X0Xn) = 0 for all

n /∈ SIP(s1, s2, . . .).

If P is predictive then

P ∩ SIP(s1, s2, . . .) 6= ∅.

One can use this to prove that predictive sets are SIP∗.
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Linear Predictivity

In fact if µ is singular by a theorem of Verblunsky we get the
following result:

Theorem

If XZ is a complex-valued L2 process for which the spectral
measure µ is singular and P is predictive then X0 is in the closed
linear span of Xi ; i ∈ P.

I wasn’t aware of this even for processes arising from circle
rotations and P = N.

On the other hand if the spectral measure has a Lebesgue
component but XZ has zero entropy then we can predict but not
linearly predict the process.
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Riesz Sets

Using this machinery we can conclude the following result.

Theorem (Chandgotia, Weiss)

If P ⊂N is a set such that P + i is predictive for all i ∈N then
for all singular measures µ on R/Z there exists p ∈ P such that
the Fourier coefficient

µ̂(p) 6= 0.

In other words any measure µ on R/Z whose Fourier coefficients
are supported on Z \ P must have an absolutely continuous
component.

This is very close to Riesz sets as defined by Yves Meyer in 1968:
A set Q ⊂ Z is called a Riesz set if all measures on R/Z whose
Fourier coefficients are supported on Q are absolutely continuous.
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Riesz Sets

A set P ⊂N is called totally predictive if P + i is predictive for all
i ∈N.

Theorem (Chandgotia, Weiss)

If P ⊂N is a totally predictive set which is open in the Bohr
topology, then Z \ P is a Riesz set.

Question

If P ⊂N is totally predictive then is Z \ P a Riesz set? If Q ⊂N

is a set such that Q ∪ (−N) is Riesz then is N \Q a totally
predictive set?
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A titillating question

Let nN be an increasing sequence of natural numbers such that
ni+1 − ni is also an increasing sequence. We had asked whether
N \ nN is totally predictive.

It is unknown even for ni = i3 whether (−N) ∪ nN is a Riesz set.
Wallen (1970) proved that if µ is a measure whose Fourier
coefficients are supported on (−N) ∪ nN then µ ? µ is absolutely
continuous.

Following an idea by Lindenstrauss, a simple application of
Fermat’s last theorem and Cauchy Schwarz gives us the following
partial result.
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Theorem (Chandgotia, Weiss)

If µ is a probability measure whose Fourier coefficients are
supported on {±iK : i ∈N} ∪ {0} for some k ≥ 2 then µ is not
singular.
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Summary

Return-time sets are predictive.

The converse is not true.

Predictive sets are SIP?.

Predictive sets have bounded gaps.
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If you were bored. . .

1 Is the intersection of two predictive sets also a predictive set?

2 Are all SIP? sets predictive?

3 Is {n : nα ∈ (0, ε)} a predictive set for irrational α?

4 Let {nk}k∈N be an increasing sequence such that nk+1 − nk

is also an increasing sequence. Prove that

H(X0 | XN\{nk | k∈N}) = 0.

5 What is the relationship between Riesz sets and totally
predictive sets?

6 Explore linear prediction.
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