Quasicrystals FROM THE POINT OF VIEW OF Additive Combinatorics

Jakub Konieczny
Université de Lyon
Jagiellonian University

12 March 2021, Jagiellonian University

Crystals

Figure: Salt crystal and the corresponding arrangement of molecules.

Crystals

Figure: Salt crystal and the corresponding arrangement of molecules.

- Crystals are periodic arrangements of molecules.
- Possible symmetry groups are highly constrained.
- Mathematically, we are simply looking at lattices.

Quasicrystals

Figure: A photography of a piece of $\mathrm{Ho}-\mathrm{Mg}-\mathrm{Zn}$, and surface potential for $\mathrm{Al}-\mathrm{Pd}-\mathrm{Mn}$.

Quasicrystals

Figure: A photography of a piece of $\mathrm{Ho}-\mathrm{Mg}-\mathrm{Zn}$, and surface potential for $\mathrm{Al}-\mathrm{Pd}-\mathrm{Mn}$.

- Quasicrystals exhibit approximate translation and rotation symmetries.
- Possible symmetry groups are much richer than for crystals.
- Mathematical description becomes considerably less trivial.

Penrose tiling

Penrose tiling

- Penrose constructed a quasiperiodic tiling of the plane with 2 tiles.
- Additionally there is a 5 -fold approximate rotational symmetry.

Basic notation and terminology
Fix dimension $d \geq 1$. For $x=\left(x_{i}\right)_{i=1}^{d} \in \mathbb{R}^{d}, R>0$, let

$$
\mathcal{B}_{\infty}^{d}(x, R)=\prod_{i=1}^{d}\left(x_{i}-R, x_{i}+R\right)
$$

denote the ℓ^{∞} ball centred at x. Let λ denote the Lebesgue measure.

Basic notation and terminology

Fix dimension $d \geq 1$. For $x=\left(x_{i}\right)_{i=1}^{d} \in \mathbb{R}^{d}, R>0$, let

$$
\mathcal{B}_{\infty}^{d}(x, R)=\prod_{i=1}^{d}\left(x_{i}-R, x_{i}+R\right)
$$

denote the ℓ^{∞} ball centred at x. Let λ denote the Lebesgue measure.
Let $A \subset \mathbb{R}^{d}$ for some $d \geq 1$, and let $R, r>0$. Then A is

- R-relatively dense if $\mathcal{B}_{\infty}^{d}(x, R) \cap A \neq \emptyset$ for each $x \in \mathbb{R}^{d}$;
- r-uniformly discrete if $\mathcal{B}_{\infty}^{d}(x, r) \cap A=\{x\}$ for each $x \in A$.

Accordingly, A is relatively dense if there exists $R>0$ such that A is R-relatively dense. Likewise, A is uniformly discrete if there exists $r>0$ such that A is r-uniformly discrete. If A is both relatively dense and uniformly discrete then A is a Delone set.

Basic notation and terminology

Fix dimension $d \geq 1$. For $x=\left(x_{i}\right)_{i=1}^{d} \in \mathbb{R}^{d}, R>0$, let

$$
\mathcal{B}_{\infty}^{d}(x, R)=\prod_{i=1}^{d}\left(x_{i}-R, x_{i}+R\right)
$$

denote the ℓ^{∞} ball centred at x. Let λ denote the Lebesgue measure.
Let $A \subset \mathbb{R}^{d}$ for some $d \geq 1$, and let $R, r>0$. Then A is

- R-relatively dense if $\mathcal{B}_{\infty}^{d}(x, R) \cap A \neq \emptyset$ for each $x \in \mathbb{R}^{d}$;
- r-uniformly discrete if $\mathcal{B}_{\infty}^{d}(x, r) \cap A=\{x\}$ for each $x \in A$.

Accordingly, A is relatively dense if there exists $R>0$ such that A is R-relatively dense. Likewise, A is uniformly discrete if there exists $r>0$ such that A is r-uniformly discrete. If A is both relatively dense and uniformly discrete then A is a Delone set.

We define the lower and upper uniform densities of A as

$$
D^{+}(A)=\limsup _{R \rightarrow \infty} \sup _{x \in X} \frac{\left|A \cap \mathcal{B}_{\infty}^{d}(x, R)\right|}{\lambda\left(\mathcal{B}_{\infty}^{d}(x, R)\right)}, \quad D^{-}(A)=\liminf _{R \rightarrow \infty} \inf _{x \in X} \frac{\left|A \cap \mathcal{B}_{\infty}^{d}(x, R)\right|}{\lambda\left(\mathcal{B}_{\infty}^{d}(x, R)\right)},
$$

If A is relatively dense then $D^{-}(A)>0$. If A is uniformly discrete then $D^{+}(A)<\infty$.

Cut-and-project sets

Definition: Let $d, e \in \mathbb{N}_{0}$. For a discrete subgroup $\Gamma<\mathbb{R}^{d+e}$ and a "window" $\Omega \subset \mathbb{R}^{e}$, we define the corresponding cut-and-project set

$$
\Lambda(\Gamma, \Omega):=\pi_{1}\left(\Gamma \cap \pi_{2}^{-1}(\Omega)\right),
$$

where $\pi_{1}: \mathbb{R}^{d+e} \rightarrow \mathbb{R}^{d}$ and $\pi_{2}: \mathbb{R}^{d+e} \rightarrow \mathbb{R}^{e}$ are the projections. The window Ω needs to be topologically "nice"; here, we require that Ω is compact and $\Omega=\operatorname{clint} \Omega$.

Cut-and-project sets

Definition: Let $d, e \in \mathbb{N}_{0}$. For a discrete subgroup $\Gamma<\mathbb{R}^{d+e}$ and a "window" $\Omega \subset \mathbb{R}^{e}$, we define the corresponding cut-and-project set

$$
\Lambda(\Gamma, \Omega):=\pi_{1}\left(\Gamma \cap \pi_{2}^{-1}(\Omega)\right),
$$

where $\pi_{1}: \mathbb{R}^{d+e} \rightarrow \mathbb{R}^{d}$ and $\pi_{2}: \mathbb{R}^{d+e} \rightarrow \mathbb{R}^{e}$ are the projections. The window Ω needs to be topologically "nice"; here, we require that Ω is compact and $\Omega=\operatorname{clint} \Omega$.

Figure: The red dots form a cut-and-project set.
Minimality assumptions: Γ is a lattice, π_{1} is injective on $\Gamma, \pi_{2}(\Gamma)$ is=dense.

Meyer sets

Cut-and-project sets have many properties that we would expect of a quasicrystal:

- They are Delone sets;
- They are approximately shift-invariant;
- They have a finite number of "local patches".

Meyer sets

Cut-and-project sets have many properties that we would expect of a quasicrystal:

- They are Delone sets;
- They are approximately shift-invariant;
- They have a finite number of "local patches".

Idea: For $A, B \subset \mathbb{R}^{d}$, let $A \pm B=\{a \pm b: a \in A, b \in B\}$. If A is a model of a quasicrystal, we expect $A-A$ to not be very large. We want to develop a theory that describes this type of sets.

Meyer sets

Cut-and-project sets have many properties that we would expect of a quasicrystal:

- They are Delone sets;
- They are approximately shift-invariant;
- They have a finite number of "local patches".

Idea: For $A, B \subset \mathbb{R}^{d}$, let $A \pm B=\{a \pm b: a \in A, b \in B\}$. If A is a model of a quasicrystal, we expect $A-A$ to not be very large. We want to develop a theory that describes this type of sets.

Theorem (Meyer; Lagarias; Nir \& Olevskii)

Let $A \subset \mathbb{R}^{d}$ be relatively dense. Then the following conditions are equivalent:
(1) $D^{+}(A-A)<\infty$;
(2) $A-A$ is uniformly discrete;
(3) A is uniformly discrete and $A-A \subset A+F$ for a finite set F;
(4) $A \subset M+F$ for a cut-and-project set M and a finite set F.

Meyer sets

Cut-and-project sets have many properties that we would expect of a quasicrystal:

- They are Delone sets;
- They are approximately shift-invariant;
- They have a finite number of "local patches".

Idea: For $A, B \subset \mathbb{R}^{d}$, let $A \pm B=\{a \pm b: a \in A, b \in B\}$. If A is a model of a quasicrystal, we expect $A-A$ to not be very large. We want to develop a theory that describes this type of sets.

Theorem (Meyer; Lagarias; Nir \& Olevskii)

Let $A \subset \mathbb{R}^{d}$ be relatively dense. Then the following conditions are equivalent:
(1) $D^{+}(A-A)<\infty$;
(2) $A-A$ is uniformly discrete;
(3) A is uniformly discrete and $A-A \subset A+F$ for a finite set F;
(4) $A \subset M+F$ for a cut-and-project set M and a finite set F.

Definition: A Meyer set is a relatively dense set $A \subset \mathbb{R}^{d}$ that satisfies any of the equivalent conditions in the theorem above.

Meyer sets

Cut-and-project sets have many properties that we would expect of a quasicrystal:

- They are Delone sets;
- They are approximately shift-invariant;
- They have a finite number of "local patches".

Idea: For $A, B \subset \mathbb{R}^{d}$, let $A \pm B=\{a \pm b: a \in A, b \in B\}$. If A is a model of a quasicrystal, we expect $A-A$ to not be very large. We want to develop a theory that describes this type of sets.

Theorem (Meyer; Lagarias; Nir \& Olevskii)

Let $A \subset \mathbb{R}^{d}$ be relatively dense. Then the following conditions are equivalent:
(1) $D^{+}(A-A)<\infty$;
(2) $A-A$ is uniformly discrete;
(3) A is uniformly discrete and $A-A \subset A+F$ for a finite set F;
(4) $A \subset M+F$ for a cut-and-project set M and a finite set F.

Definition: A Meyer set is a relatively dense set $A \subset \mathbb{R}^{d}$ that satisfies any of the equivalent conditions in the theorem above.
Goal: We will show that this theorem follows from the Freiman-Ruzsa theorem.

Additive combinatorics

Setup: Let Z be an abelian group. Often, Z is one of $\mathbb{Z}, \mathbb{Z} / N \mathbb{Z}, \mathbb{F}_{p}^{n}$, etc. Let $A, B \subset Z$ be finite sets. Then the sum-set and difference set of A and B are:

$$
A+B=\{a+b: a \in A, b \in B\}, A-B=\{a-b: a \in A, b \in B\}
$$

More generally, for $k \in \mathbb{N}$, the k-fold sum-set of A is

$$
k A=\left\{a_{1}+a_{2}+\cdots+a_{k}: a_{1}, a_{2}, \ldots, a_{k} \in A\right\}
$$

Additive combinatorics

Setup: Let Z be an abelian group. Often, Z is one of $\mathbb{Z}, \mathbb{Z} / N \mathbb{Z}, \mathbb{F}_{p}^{n}$, etc.
Let $A, B \subset Z$ be finite sets. Then the sum-set and difference set of A and B are:

$$
A+B=\{a+b: a \in A, b \in B\}, A-B=\{a-b: a \in A, b \in B\}
$$

More generally, for $k \in \mathbb{N}$, the k-fold sum-set of A is

$$
k A=\left\{a_{1}+a_{2}+\cdots+a_{k}: a_{1}, a_{2}, \ldots, a_{k} \in A\right\}
$$

Question: What can be said about $A+B$? If we know something about $A+B$ (resp. about $A-B$, or $A+k B$, etc.) what can be said about A and B ?

Additive combinatorics

Setup: Let Z be an abelian group. Often, Z is one of $\mathbb{Z}, \mathbb{Z} / N \mathbb{Z}, \mathbb{F}_{p}^{n}$, etc. Let $A, B \subset Z$ be finite sets. Then the sum-set and difference set of A and B are:

$$
A+B=\{a+b: a \in A, b \in B\}, A-B=\{a-b: a \in A, b \in B\} .
$$

More generally, for $k \in \mathbb{N}$, the k-fold sum-set of A is

$$
k A=\left\{a_{1}+a_{2}+\cdots+a_{k}: a_{1}, a_{2}, \ldots, a_{k} \in A\right\} .
$$

Question: What can be said about $A+B$? If we know something about $A+B$ (resp. about $A-B$, or $A+k B$, etc.) what can be said about A and B ?

- If $A, B \subset \mathbb{Z}$ then $|A+B| \geq|A|+|B|-1$ (with equality for arithmetic progressions of equal step);
- Cauchy-Davenport: If $A, B \subset \mathbb{Z} / N \mathbb{Z}$ with N prime then $|A+B| \geq \min (|A|+|B|-1, N) ;$
- Freiman's " $3 k-4$ ": If $|A+A| \leq 3|A|-4$ then A is contained in arithmetic progression of length $|A+A|-|A|+1$;
- Plünnecke: If $|A+B| \leq K|A|$, then $|k B-l B| \leq K^{k+l}|A|$ for each $k, l \geq 0$.

Freiman-Ruzsa theorem

A generalised arithmetic progression (GAP) of rank d with steps $a_{1}, a_{2}, \ldots, a_{d} \in Z$ and side lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{d} \in \mathbb{N}$ is

$$
P=\left\{b+n_{1} a_{1}+n_{2} a_{2}+\cdots+n_{d} a_{d}: 0 \leq n_{i} \leq \ell_{i} \text { for all } i=1,2, \ldots, d\right\}
$$

As a special case, there are symmetric generalised arithmetic progressions which take the form

$$
P=\left\{n_{1} a_{1}+n_{2} a_{2}+\cdots+n_{d} a_{d}:\left|n_{i}\right| \leq \ell_{i} \text { for all } i=1,2, \ldots, d\right\}
$$

Freiman-Ruzsa theorem

A generalised arithmetic progression (GAP) of rank d with steps $a_{1}, a_{2}, \ldots, a_{d} \in Z$ and side lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{d} \in \mathbb{N}$ is

$$
P=\left\{b+n_{1} a_{1}+n_{2} a_{2}+\cdots+n_{d} a_{d}: 0 \leq n_{i} \leq \ell_{i} \text { for all } i=1,2, \ldots, d\right\}
$$

As a special case, there are symmetric generalised arithmetic progressions which take the form

$$
P=\left\{n_{1} a_{1}+n_{2} a_{2}+\cdots+n_{d} a_{d}:\left|n_{i}\right| \leq \ell_{i} \text { for all } i=1,2, \ldots, d\right\}
$$

Generalised arithmetic progressions have bounded doubling: $|P+P| \leq 2^{d}|P|$.

Freiman-Ruzsa theorem

A generalised arithmetic progression (GAP) of rank d with steps $a_{1}, a_{2}, \ldots, a_{d} \in Z$ and side lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{d} \in \mathbb{N}$ is

$$
P=\left\{b+n_{1} a_{1}+n_{2} a_{2}+\cdots+n_{d} a_{d}: 0 \leq n_{i} \leq \ell_{i} \text { for all } i=1,2, \ldots, d\right\}
$$

As a special case, there are symmetric generalised arithmetic progressions which take the form

$$
P=\left\{n_{1} a_{1}+n_{2} a_{2}+\cdots+n_{d} a_{d}:\left|n_{i}\right| \leq \ell_{i} \text { for all } i=1,2, \ldots, d\right\}
$$

Generalised arithmetic progressions have bounded doubling: $|P+P| \leq 2^{d}|P|$.

Theorem (Freiman-Ruzsa)

Fix $K>0$. Suppose that $|A|=|B|=n$ and $|A+B| \leq K n$. Then there exists a generalised progression P of rank $O_{K}(1)$ and size $|P|=O_{K}(n)$ such that $A \subset P$.

More precisely: we can take $P=F+Q$ where F is a finite set of size $O_{K}(1)$ and Q is a symmetric generalised arithmetic progression with $Q \subset 2 A-2 A$.

Continuous variants

Setup: Let G be a compact abelian group, such as $\mathbb{Z} / N \mathbb{Z}$ or \mathbb{R} / \mathbb{Z}. Let μ_{G} denote the Haar measure on G. Let $A, B \subset G$ be compact sets. Then $A+B, A-B, k A(k \in \mathbb{N})$ are defined the same way as before.

Continuous variants

Setup: Let G be a compact abelian group, such as $\mathbb{Z} / N \mathbb{Z}$ or \mathbb{R} / \mathbb{Z}. Let μ_{G} denote the Haar measure on G. Let $A, B \subset G$ be compact sets. Then $A+B, A-B, k A(k \in \mathbb{N})$ are defined the same way as before.

Theorem (Kneser; Macbeath; Raikov)

Suppose that G is connected. Then $\mu_{G}(A+B) \geq \min \left(\mu_{G}(A)+\mu_{G}(B), 1\right)$.

Continuous variants

Setup: Let G be a compact abelian group, such as $\mathbb{Z} / N \mathbb{Z}$ or \mathbb{R} / \mathbb{Z}. Let μ_{G} denote the Haar measure on G. Let $A, B \subset G$ be compact sets. Then $A+B, A-B, k A(k \in \mathbb{N})$ are defined the same way as before.

Theorem (Kneser; Macbeath; Raikov)

Suppose that G is connected. Then $\mu_{G}(A+B) \geq \min \left(\mu_{G}(A)+\mu_{G}(B), 1\right)$.

Corollary

Let $A \subset[0,1]^{d}$ be a measurable set with measure $\varepsilon>0$. Then there exists $k=k(d, \varepsilon) \in \mathbb{N}$ with $k=O\left(d / \varepsilon^{2}\right)$ and $b \in \mathbb{R}^{d}$ such that $k A \supset[0,1]^{d}+b$.

Proof.

Without loss of generality, A is compact, $0 \in A$. We run induction with respect to d.

- $d=1$: Let $A_{1}=A \bmod \mathbb{Z}$. By Kneser, $k_{1} A=\mathbb{R} / \mathbb{Z}$ for $k_{1}=\lceil 1 / \varepsilon\rceil$, so $k_{1} A$ contains an integer $0 \neq m \leq k_{1}$. Let $A_{2}=A \bmod m \mathbb{Z}$, so $k_{2} A_{2}=\mathbb{R} / m \mathbb{Z}$ for $k_{2}=m\lceil 1 / \varepsilon\rceil$.

$$
[0, m] \subset k_{2} A-\left\{0, m, \ldots, k_{2}\right\} \subset k_{2} A+k_{1}^{2} A-k_{2}
$$

Thus, we can take $k(1, \varepsilon)=k_{2}+k_{1}^{2} \leq 2\lceil 1 / \varepsilon\rceil^{2}$.

- $d \geq 2$: The set $k(1, \varepsilon) A$ contains a unit segment in each of the d basic directions. Hence, we can take $k(d, \varepsilon)=d k(1, \varepsilon) \leq 2 d\lceil 1 / \varepsilon\rceil^{2}$.

Characterisation of Meyer sets via the Freiman-Ruzsa Theorem

Theorem

Let $d \in \mathbb{N}$ and $A \subset \mathbb{R}^{d}$. Suppose that A is relatively dense and $D^{+}(A-A)<\infty$. Then there exists a finite set F and a cut-and-project set M such that $A \subset M+F$.

Characterisation of Meyer sets via the Freiman-Ruzsa Theorem

Theorem

Let $d \in \mathbb{N}$ and $A \subset \mathbb{R}^{d}$. Suppose that A is relatively dense and $D^{+}(A-A)<\infty$. Then there exists a finite set F and a cut-and-project set M such that $A \subset M+F$.

Proof: Without loss of generality, A is 1-relatively dense. For $N \in \mathbb{N}$, let

$$
A_{N}:=A \cap \mathcal{B}_{\infty}^{d}(0, N) .
$$

The sets A_{N} have bounded doubling:

$$
\limsup _{N \rightarrow \infty} \frac{\left|A_{N}-A_{N}\right|}{\left|A_{N}\right|} \leq \limsup _{N \rightarrow \infty} \frac{\left|(A-A) \cap \mathcal{B}_{\infty}^{d}(0,2 N)\right|}{\left|A \cap \mathcal{B}_{\infty}^{d}(0, N)\right|} \leq \frac{2^{d} D^{+}(A-A)}{D^{-}(A)} .
$$

Pick a constant $K>0$ such that $\left|A_{N}-A_{N}\right| \leq K\left|A_{N}\right|$ for all $N \in \mathbb{N}$.

Characterisation of Meyer sets via the Freiman-Ruzsa Theorem

Theorem

Let $d \in \mathbb{N}$ and $A \subset \mathbb{R}^{d}$. Suppose that A is relatively dense and $D^{+}(A-A)<\infty$. Then there exists a finite set F and a cut-and-project set M such that $A \subset M+F$.

Proof: Without loss of generality, A is 1-relatively dense. For $N \in \mathbb{N}$, let

$$
A_{N}:=A \cap \mathcal{B}_{\infty}^{d}(0, N) .
$$

The sets A_{N} have bounded doubling:

$$
\limsup _{N \rightarrow \infty} \frac{\left|A_{N}-A_{N}\right|}{\left|A_{N}\right|} \leq \limsup _{N \rightarrow \infty} \frac{\left|(A-A) \cap \mathcal{B}_{\infty}^{d}(0,2 N)\right|}{\left|A \cap \mathcal{B}_{\infty}^{d}(0, N)\right|} \leq \frac{2^{d} D^{+}(A-A)}{D^{-}(A)} .
$$

Pick a constant $K>0$ such that $\left|A_{N}-A_{N}\right| \leq K\left|A_{N}\right|$ for all $N \in \mathbb{N}$. By Freiman-Ruzsa: there are symmetric generalised arithmetic progressions Q_{N} of rank $e=O_{K}(1)$ and finite sets F_{N} with cardinality $h=\left|F_{N}\right|=O_{K}(1)$ such that

$$
Q_{N} \subset 2 A_{N}-2 A_{N} \text { and } A_{N} \subset F_{N}+Q_{N}
$$

We may write Q_{N} is the form

$$
\begin{equation*}
Q_{N}=\left\{n_{1} a_{1}^{N}+n_{2} a_{2}^{N}+\cdots+n_{e} a_{e}^{N}:\left|n_{i}\right|<\ell_{i}^{N} \text { for all } 1 \leq i \leq e\right\} \tag{1}
\end{equation*}
$$

for some $a_{1}^{N}, a_{2}^{N}, \ldots, a_{e}^{N} \in \mathbb{R}^{d}$ and $\ell_{1}^{N}, \ell_{2}^{N}, \ldots, \ell_{e}^{N} \in \mathbb{N}_{0}$.

Problem: The sets F_{N} may fail to be uniformly bounded as $N \rightarrow \infty$.

Problem: The sets F_{N} may fail to be uniformly bounded as $N \rightarrow \infty$.
Claim 1. There exist finite sets F_{N}^{\prime} with $\left|F_{N}^{\prime}\right| \leq h$ and $F_{N}^{\prime} \subset \mathcal{B}_{\infty}^{d}\left(0, O_{K}(1)\right)$ as well as a positive integer $k=O_{K, d}(1)$ such that $F_{N}+Q_{N} \subset F_{N}^{\prime}+k Q_{N}$ for all $N \in \mathbb{N}$.

Problem: The sets F_{N} may fail to be uniformly bounded as $N \rightarrow \infty$.
Claim 1. There exist finite sets F_{N}^{\prime} with $\left|F_{N}^{\prime}\right| \leq h$ and $F_{N}^{\prime} \subset \mathcal{B}_{\infty}^{d}\left(0, O_{K}(1)\right)$ as well as a positive integer $k=O_{K, d}(1)$ such that $F_{N}+Q_{N} \subset F_{N}^{\prime}+k Q_{N}$ for all $N \in \mathbb{N}$.
Proof: Without loss of generality, $F_{N} \subset \mathcal{B}_{\infty}^{d}(0,5 N)$. Since A is 1-relatively dense,

$$
\mathcal{B}_{\infty}^{d}(0, N) \subset A_{N}+\mathcal{B}_{\infty}^{d}(0,1) \subset F_{N}+Q_{N}+\mathcal{B}_{\infty}^{d}(0,1) .
$$

Hence, by the union bound,

$$
\lambda\left(Q_{N}+\mathcal{B}_{\infty}^{d}(0,1)\right) \geq \lambda\left(\mathcal{B}_{\infty}^{d}(0, N)\right) / h .
$$

From Macbeath's theorem, there exists $k_{1}=O_{K, d}(1)$ and $b \in \mathbb{R}^{d}$ such that

$$
k_{1} Q_{N}+\mathcal{B}_{\infty}^{d}\left(0, k_{1}\right)+b \supset \mathcal{B}_{\infty}^{d}(0,10 N) .
$$

Using the symmetry of Q_{N}, we may remove the shift by b :

$$
2 k_{1} Q_{N}+\mathcal{B}_{\infty}^{d}\left(0,2 k_{1}\right) \supset \mathcal{B}_{\infty}^{d}(0,10 N) .
$$

Hence, there exists a set $F_{N}^{\prime} \subset \mathcal{B}_{\infty}^{d}\left(0,2 k_{1}\right)$ with $\left|F_{N}^{\prime}\right| \leq\left|F_{N}\right|$ such that

$$
F_{N} \subset 2 k_{1} Q_{N}+F_{N}^{\prime} .
$$

Letting $k=2 k_{1}+1$ we find that $A_{N} \subset F_{N}+Q_{N} \subset F_{N}^{\prime}+k Q_{N}$.

Definition: Let $\Lambda_{N}<\mathbb{R}^{d+e}$ be the group spanned by

$$
\begin{equation*}
v_{i}^{N}=\left(a_{i}^{N}, \vec{e}_{i} / \ell_{i}\right), \quad(1 \leq i \leq e) \tag{2}
\end{equation*}
$$

where $\vec{e}_{i}=$ the i-th vector in the standard basis of \mathbb{R}^{e}.

Definition: Let $\Lambda_{N}<\mathbb{R}^{d+e}$ be the group spanned by

$$
\begin{equation*}
v_{i}^{N}=\left(a_{i}^{N}, \vec{e}_{i} / \ell_{i}\right), \quad(1 \leq i \leq e) \tag{2}
\end{equation*}
$$

where $\vec{e}_{i}=$ the i-th vector in the standard basis of \mathbb{R}^{e}.
Claim 2. For each $N \in \mathbb{N}$ it holds that

$$
\begin{equation*}
A_{N} \subset F_{N}^{\prime}+\pi_{1}\left(\Lambda_{N} \cap\left(\mathbb{R}^{d} \times \overline{\mathcal{B}}_{\infty}^{e}(0, k)\right)\right) \tag{3}
\end{equation*}
$$

Definition: Let $\Lambda_{N}<\mathbb{R}^{d+e}$ be the group spanned by

$$
\begin{equation*}
v_{i}^{N}=\left(a_{i}^{N}, \vec{e}_{i} / \ell_{i}\right), \quad(1 \leq i \leq e), \tag{2}
\end{equation*}
$$

where $\vec{e}_{i}=$ the i-th vector in the standard basis of \mathbb{R}^{e}.
Claim 2. For each $N \in \mathbb{N}$ it holds that

$$
\begin{equation*}
A_{N} \subset F_{N}^{\prime}+\pi_{1}\left(\Lambda_{N} \cap\left(\mathbb{R}^{d} \times \overline{\mathcal{B}}_{\infty}^{e}(0, k)\right)\right) . \tag{3}
\end{equation*}
$$

Proof: Pick any N and any $x \in k Q_{N}$. Then x can be written as

$$
x=\sum_{i=1}^{e} n_{i} a_{i}^{N},
$$

where $\left|n_{i}\right| \leq k \ell_{i}^{N}$ for all $1 \leq i \leq e$. Hence, x is the first coordinate of the point

$$
\left(x, \sum_{i=1}^{e}\left(n_{i} / \ell_{i}^{N}\right) \vec{e}_{i}\right) \in \Lambda_{N} \cap\left(\mathbb{R}^{d} \times \overline{\mathcal{B}}_{\infty}^{e}(0, k)\right) .
$$

It follows that (3) holds:

$$
A_{N} \subset F_{N}^{\prime}+k Q_{N} \subset F_{N}^{\prime}+\pi_{1}\left(\Lambda_{N} \cap\left(\mathbb{R}^{d} \times \overline{\mathcal{B}}_{\infty}^{e}(0, k)\right)\right)
$$

Claim 3. There exists $r>0$ such that Λ_{N} is r-uniformly discrete for each N.

Claim 3. There exists $r>0$ such that Λ_{N} is r-uniformly discrete for each N. Proof: Suppose that Λ_{N} is not $1 / M$-uniformly discrete. Pick a $u \in \Lambda_{N}$ with $\|u\|_{\infty}<1 / M$. Let integers n_{i} and vector c be defined by

$$
\begin{equation*}
u=\sum_{i=1}^{e} n_{i} v_{i}^{N}, \text { and } c:=\sum_{i=1}^{e} n_{i} a_{i}^{N}=\pi_{1}(u) \tag{4}
\end{equation*}
$$

Combining (2) and (4), we see that

$$
\begin{equation*}
\|c\|_{\infty}<1 / M, \text { and }\left|n_{i}\right|<\ell_{i} / M \text { for } 1 \leq i \leq e \tag{5}
\end{equation*}
$$

Hence, $\pm c, \pm 2 c, \ldots, \pm M c \in Q_{N} \cap \mathcal{B}_{\infty}^{d}(0,1)$. Let $B \subset A$ be a maximal 2-separated subset and $B_{N}:=B \cap \mathcal{B}_{\infty}^{d}(0, N)$. Since $Q_{N} \subset 2 A_{N}-2 A_{N}$ and $B_{N} \subset A_{N}$,

$$
m c+b \in 3 A_{N}-2 A_{N} \text { for all }-M \leq m \leq M \text { and } b \in B_{N}
$$

Since all of these points are distinct,

$$
\left|3 A_{N}-2 A_{N}\right| \geq(2 M+1)\left|B_{N}\right|
$$

Conversely, by Plünnecke inequality,

$$
\left|3 A_{N}-2 A_{N}\right| \leq K^{5}\left|A_{N}\right|
$$

Consequently, $M \leq K^{5}\left|A_{N}\right| /\left|B_{N}\right|$, which leads to contradiction if M is large enough.

Definition: A sequence of sets $X_{n} \subset \mathbb{R}^{d}$ converges (in Fell topology) to $X \subset \mathbb{R}^{d}$ if for each $\varepsilon>0$ there exists n such that for each $n \geq n_{0}, X_{n} \cap \mathcal{B}_{\infty}^{e}(0,1 / \varepsilon) \subset X+\mathcal{B}_{\infty}^{e}(0, \varepsilon)$ and $X \cap \mathcal{B}_{\infty}^{e}(0,1 / \varepsilon) \subset X_{n}+\mathcal{B}_{\infty}^{e}(0, \varepsilon)$.

Definition: A sequence of sets $X_{n} \subset \mathbb{R}^{d}$ converges (in Fell topology) to $X \subset \mathbb{R}^{d}$ if for each $\varepsilon>0$ there exists n such that for each $n \geq n_{0}, X_{n} \cap \mathcal{B}_{\infty}^{e}(0,1 / \varepsilon) \subset X+\mathcal{B}_{\infty}^{e}(0, \varepsilon)$ and $X \cap \mathcal{B}_{\infty}^{e}(0,1 / \varepsilon) \subset X_{n}+\mathcal{B}_{\infty}^{e}(0, \varepsilon)$.
Passing to a subsequence, we may assume:

- $\Lambda_{N} \rightarrow \Lambda$ as $N \rightarrow \infty$ for some set $\Lambda \subset \mathbb{R}^{d}$;
- $F_{N}^{\prime} \rightarrow F^{\prime}$ as $N \rightarrow \infty$ for some set $F^{\prime} \subset \mathbb{R}^{d}$.

Definition: A sequence of sets $X_{n} \subset \mathbb{R}^{d}$ converges (in Fell topology) to $X \subset \mathbb{R}^{d}$ if for each $\varepsilon>0$ there exists n such that for each $n \geq n_{0}, X_{n} \cap \mathcal{B}_{\infty}^{e}(0,1 / \varepsilon) \subset X+\mathcal{B}_{\infty}^{e}(0, \varepsilon)$ and $X \cap \mathcal{B}_{\infty}^{e}(0,1 / \varepsilon) \subset X_{n}+\mathcal{B}_{\infty}^{e}(0, \varepsilon)$.
Passing to a subsequence, we may assume:

- $\Lambda_{N} \rightarrow \Lambda$ as $N \rightarrow \infty$ for some set $\Lambda \subset \mathbb{R}^{d}$;
- $F_{N}^{\prime} \rightarrow F^{\prime}$ as $N \rightarrow \infty$ for some set $F^{\prime} \subset \mathbb{R}^{d}$.

Claim 4. The set Λ is a discrete subgroup of $\mathbb{R}^{d} \times \mathbb{R}^{e}, F^{\prime}$ is finite and

$$
\begin{equation*}
A \subset F^{\prime}+\pi_{1}\left(\Lambda \cap\left(\mathbb{R}^{d} \times \overline{\mathcal{B}}_{\infty}^{e}(0, k)\right)\right) \tag{6}
\end{equation*}
$$

Definition: A sequence of sets $X_{n} \subset \mathbb{R}^{d}$ converges (in Fell topology) to $X \subset \mathbb{R}^{d}$ if for each $\varepsilon>0$ there exists n such that for each $n \geq n_{0}, X_{n} \cap \mathcal{B}_{\infty}^{e}(0,1 / \varepsilon) \subset X+\mathcal{B}_{\infty}^{e}(0, \varepsilon)$ and $X \cap \mathcal{B}_{\infty}^{e}(0,1 / \varepsilon) \subset X_{n}+\mathcal{B}_{\infty}^{e}(0, \varepsilon)$.
Passing to a subsequence, we may assume:

- $\Lambda_{N} \rightarrow \Lambda$ as $N \rightarrow \infty$ for some set $\Lambda \subset \mathbb{R}^{d}$;
- $F_{N}^{\prime} \rightarrow F^{\prime}$ as $N \rightarrow \infty$ for some set $F^{\prime} \subset \mathbb{R}^{d}$.

Claim 4. The set Λ is a discrete subgroup of $\mathbb{R}^{d} \times \mathbb{R}^{e}, F^{\prime}$ is finite and

$$
\begin{equation*}
A \subset F^{\prime}+\pi_{1}\left(\Lambda \cap\left(\mathbb{R}^{d} \times \overline{\mathcal{B}}_{\infty}^{e}(0, k)\right)\right) \tag{6}
\end{equation*}
$$

Proof: Because the relevant properties are preserved under limits:

- Λ is a r-uniformly discrete (with r from Claim 3);
- Λ is a subgroup of \mathbb{R}^{d};
- $\left|F^{\prime}\right| \leq h$ (where h is the cardinality of F_{N}).

Take any point $x \in A$. Then $x \in A_{N}$ for all large N. By Claim 2, there are $y_{N} \in F_{N}^{\prime}$ and $z_{N} \in \Lambda_{N} \cap\left(\mathbb{R}^{d} \times \overline{\mathcal{B}}_{\infty}^{e}(0, k)\right)$ such that

$$
x=y_{N}+\pi_{1}\left(z_{N}\right)
$$

By Claim 1, y_{N} are bounded as $N \rightarrow \infty$, and hence so are z_{N}. We may assume that $y_{N} \rightarrow y \in F^{\prime}$ and $z_{N} \rightarrow z \in \Lambda$ as $N \rightarrow \infty$. Notice that $z \in \mathbb{R}^{d} \times \overline{\mathcal{B}}_{\infty}^{e}(0, k)$ and $x=y+\pi_{1}(z)$. Hence, (6) follows.

Thank You for Your attention!

