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Crystals

Figure: Salt crystal and the corresponding arrangement of molecules.

Crystals are periodic arrangements of molecules.

Possible symmetry groups are highly constrained.

Mathematically, we are simply looking at lattices.
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Quasicrystals

Figure: A photography of a piece of Ho-Mg-Zn, and surface potential for Al-Pd-Mn.

Quasicrystals exhibit approximate translation and rotation symmetries.

Possible symmetry groups are much richer than for crystals.

Mathematical description becomes considerably less trivial.
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Penrose tiling

Penrose constructed a quasiperiodic tiling of the plane with 2 tiles.

Additionally there is a 5-fold approximate rotational symmetry.
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Basic notation and terminology

Fix dimension d ≥ 1. For x = (xi)
d
i=1 ∈ Rd, R > 0, let

Bd
∞ (x,R) =

d∏
i=1

(xi −R, xi +R)

denote the `∞ ball centred at x. Let λ denote the Lebesgue measure.

Let A ⊂ Rd for some d ≥ 1, and let R, r > 0. Then A is

R-relatively dense if Bd
∞ (x,R) ∩A 6= ∅ for each x ∈ Rd;

r-uniformly discrete if Bd
∞ (x, r) ∩A = {x} for each x ∈ A.

Accordingly, A is relatively dense if there exists R > 0 such that A is R-relatively
dense. Likewise, A is uniformly discrete if there exists r > 0 such that A is
r-uniformly discrete. If A is both relatively dense and uniformly discrete then A is a
Delone set.

We de�ne the lower and upper uniform densities of A as

D+(A) = lim sup
R→∞

sup
x∈X

∣∣A ∩ Bd
∞ (x,R)

∣∣
λ (Bd

∞ (x,R))
, D−(A) = lim inf

R→∞
inf
x∈X

∣∣A ∩ Bd
∞ (x,R)

∣∣
λ (Bd

∞ (x,R))
,

If A is relatively dense then D−(A) > 0. If A is uniformly discrete then D+(A) <∞.
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Cut-and-project sets
De�nition: Let d, e ∈ N0. For a discrete subgroup Γ < Rd+e and a �window�
Ω ⊂ Re, we de�ne the corresponding cut-and-project set

Λ(Γ,Ω) := π1

(
Γ ∩ π−1

2 (Ω)
)
,

where π1 : Rd+e → Rd and π2 : Rd+e → Re are the projections. The window Ω needs
to be topologically �nice�; here, we require that Ω is compact and Ω = cl int Ω.

Figure: The red dots form a cut-and-project set.

Minimality assumptions: Γ is a lattice, π1 is injective on Γ, π2(Γ) is dense.

6 / 16



Cut-and-project sets
De�nition: Let d, e ∈ N0. For a discrete subgroup Γ < Rd+e and a �window�
Ω ⊂ Re, we de�ne the corresponding cut-and-project set

Λ(Γ,Ω) := π1

(
Γ ∩ π−1

2 (Ω)
)
,

where π1 : Rd+e → Rd and π2 : Rd+e → Re are the projections. The window Ω needs
to be topologically �nice�; here, we require that Ω is compact and Ω = cl int Ω.

Figure: The red dots form a cut-and-project set.

Minimality assumptions: Γ is a lattice, π1 is injective on Γ, π2(Γ) is dense.
6 / 16



Meyer sets

Cut-and-project sets have many properties that we would expect of a quasicrystal:

They are Delone sets;

They are approximately shift-invariant;

They have a �nite number of �local patches�.

Idea: For A,B ⊂ Rd, let A±B = {a± b : a ∈ A, b ∈ B}. If A is a model of a
quasicrystal, we expect A−A to not be very large. We want to develop a theory that
describes this type of sets.

Theorem (Meyer; Lagarias; Nir & Olevskii)

Let A ⊂ Rd be relatively dense. Then the following conditions are equivalent:

1 D+(A−A) <∞;

2 A−A is uniformly discrete;

3 A is uniformly discrete and A−A ⊂ A+ F for a �nite set F ;

4 A ⊂M + F for a cut-and-project set M and a �nite set F .

De�nition: A Meyer set is a relatively dense set A ⊂ Rd that satis�es any of the
equivalent conditions in the theorem above.

Goal: We will show that this theorem follows from the Freiman�Ruzsa theorem.
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Additive combinatorics

Setup: Let Z be an abelian group. Often, Z is one of Z, Z/NZ, Fn
p , etc.

Let A,B ⊂ Z be �nite sets. Then the sum-set and di�erence set of A and B are:

A+B = {a+ b : a ∈ A, b ∈ B} , A−B = {a− b : a ∈ A, b ∈ B} .

More generally, for k ∈ N, the k-fold sum-set of A is

kA = {a1 + a2 + · · ·+ ak : a1, a2, . . . , ak ∈ A} .

Question: What can be said about A+B? If we know something about A+B
(resp. about A−B, or A+ kB, etc.) what can be said about A and B?

If A,B ⊂ Z then |A+B| ≥ |A|+ |B| − 1 (with equality for arithmetic
progressions of equal step);

Cauchy�Davenport: If A,B ⊂ Z/NZ with N prime then
|A+B| ≥ min(|A|+ |B| − 1, N);

Freiman's �3k − 4�: If |A+A| ≤ 3 |A| − 4 then A is contained in arithmetic
progression of length |A+A| − |A|+ 1;

Plünnecke: If |A+B| ≤ K |A|, then |kB − lB| ≤ Kk+l |A| for each k, l ≥ 0.
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Freiman�Ruzsa theorem

A generalised arithmetic progression (GAP) of rank d with steps a1, a2, . . . , ad ∈ Z
and side lengths `1, `2, . . . , `d ∈ N is

P = {b+ n1a1 + n2a2 + · · ·+ ndad : 0 ≤ ni ≤ `i for all i = 1, 2, . . . , d} ,

As a special case, there are symmetric generalised arithmetic progressions which take
the form

P = {n1a1 + n2a2 + · · ·+ ndad : |ni| ≤ `i for all i = 1, 2, . . . , d} .

Generalised arithmetic progressions have bounded doubling: |P + P | ≤ 2d |P | .

Theorem (Freiman�Ruzsa)

Fix K > 0. Suppose that |A| = |B| = n and |A+B| ≤ Kn. Then there exists a

generalised progression P of rank OK(1) and size |P | = OK(n) such that A ⊂ P .

More precisely: we can take P = F +Q where F is a �nite set of size OK(1) and Q is
a symmetric generalised arithmetic progression with Q ⊂ 2A− 2A.
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Continuous variants
Setup: Let G be a compact abelian group, such as Z/NZ or R/Z. Let µG denote the
Haar measure on G. Let A,B ⊂ G be compact sets. Then A+B, A−B, kA (k ∈ N)
are de�ned the same way as before.

Theorem (Kneser; Macbeath; Raikov)

Suppose that G is connected. Then µG(A+B) ≥ min(µG(A) + µG(B), 1).

Corollary

Let A ⊂ [0, 1]d be a measurable set with measure ε > 0. Then there exists

k = k(d, ε) ∈ N with k = O(d/ε2) and b ∈ Rd such that kA ⊃ [0, 1]d + b.

Proof.

Without loss of generality, A is compact, 0 ∈ A. We run induction with respect to d.

d = 1: Let A1 = A mod Z. By Kneser, k1A = R/Z for k1 = d1/εe, so k1A contains an
integer 0 6= m ≤ k1. Let A2 = A mod mZ, so k2A2 = R/mZ for k2 = md1/εe.

[0,m] ⊂ k2A− {0,m, . . . , k2} ⊂ k2A+ k21A− k2.

Thus, we can take k(1, ε) = k2 + k21 ≤ 2d1/εe2.
d ≥ 2: The set k(1, ε)A contains a unit segment in each of the d basic directions. Hence,
we can take k(d, ε) = dk(1, ε) ≤ 2dd1/εe2.
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Characterisation of Meyer sets via the Freiman�Ruzsa Theorem

Theorem

Let d ∈ N and A ⊂ Rd. Suppose that A is relatively dense and D+(A−A) <∞.

Then there exists a �nite set F and a cut-and-project set M such that A ⊂M + F .

Proof: Without loss of generality, A is 1-relatively dense. For N ∈ N, let

AN := A ∩ Bd
∞ (0, N) .

The sets AN have bounded doubling:

lim sup
N→∞

|AN −AN |
|AN |

≤ lim sup
N→∞

∣∣(A−A) ∩ Bd
∞ (0, 2N)

∣∣
|A ∩ Bd

∞ (0, N)| ≤ 2dD+(A−A)

D−(A)
.

Pick a constant K > 0 such that |AN −AN | ≤ K |AN | for all N ∈ N.
By Freiman�Ruzsa: there are symmetric generalised arithmetic progressions QN of
rank e = OK(1) and �nite sets FN with cardinality h = |FN | = OK(1) such that

QN ⊂ 2AN − 2AN and AN ⊂ FN +QN .

We may write QN is the form

QN =
{
n1a

N
1 + n2a

N
2 + · · ·+ nea

N
e : |ni| < `Ni for all 1 ≤ i ≤ e

}
(1)

for some aN1 , a
N
2 , . . . , a

N
e ∈ Rd and `N1 , `

N
2 , . . . , `

N
e ∈ N0.
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AN := A ∩ Bd
∞ (0, N) .

The sets AN have bounded doubling:

lim sup
N→∞

|AN −AN |
|AN |

≤ lim sup
N→∞

∣∣(A−A) ∩ Bd
∞ (0, 2N)

∣∣
|A ∩ Bd

∞ (0, N)| ≤ 2dD+(A−A)

D−(A)
.

Pick a constant K > 0 such that |AN −AN | ≤ K |AN | for all N ∈ N.
By Freiman�Ruzsa: there are symmetric generalised arithmetic progressions QN of
rank e = OK(1) and �nite sets FN with cardinality h = |FN | = OK(1) such that

QN ⊂ 2AN − 2AN and AN ⊂ FN +QN .

We may write QN is the form

QN =
{
n1a

N
1 + n2a

N
2 + · · ·+ nea

N
e : |ni| < `Ni for all 1 ≤ i ≤ e

}
(1)

for some aN1 , a
N
2 , . . . , a

N
e ∈ Rd and `N1 , `

N
2 , . . . , `

N
e ∈ N0.
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Problem: The sets FN may fail to be uniformly bounded as N →∞.

Claim 1. There exist �nite sets F ′N with |F ′N | ≤ h and F ′N ⊂ Bd
∞ (0, OK(1)) as well

as a positive integer k = OK,d(1) such that FN +QN ⊂ F ′N + kQN for all N ∈ N.

Proof: Without loss of generality, FN ⊂ Bd
∞ (0, 5N). Since A is 1-relatively dense,

Bd
∞ (0, N) ⊂ AN + Bd

∞ (0, 1) ⊂ FN +QN + Bd
∞ (0, 1) .

Hence, by the union bound,

λ
(
QN + Bd

∞ (0, 1)
)
≥ λ

(
Bd
∞ (0, N)

)
/h.

From Macbeath's theorem, there exists k1 = OK,d(1) and b ∈ Rd such that

k1QN + Bd
∞ (0, k1) + b ⊃ Bd

∞ (0, 10N) .

Using the symmetry of QN , we may remove the shift by b:

2k1QN + Bd
∞ (0, 2k1) ⊃ Bd

∞ (0, 10N) .

Hence, there exists a set F ′N ⊂ Bd
∞ (0, 2k1) with |F ′N | ≤ |FN | such that

FN ⊂ 2k1QN + F ′N .

Letting k = 2k1 + 1 we �nd that AN ⊂ FN +QN ⊂ F ′N + kQN .

12 / 16



Problem: The sets FN may fail to be uniformly bounded as N →∞.

Claim 1. There exist �nite sets F ′N with |F ′N | ≤ h and F ′N ⊂ Bd
∞ (0, OK(1)) as well

as a positive integer k = OK,d(1) such that FN +QN ⊂ F ′N + kQN for all N ∈ N.

Proof: Without loss of generality, FN ⊂ Bd
∞ (0, 5N). Since A is 1-relatively dense,

Bd
∞ (0, N) ⊂ AN + Bd

∞ (0, 1) ⊂ FN +QN + Bd
∞ (0, 1) .

Hence, by the union bound,

λ
(
QN + Bd

∞ (0, 1)
)
≥ λ

(
Bd
∞ (0, N)

)
/h.

From Macbeath's theorem, there exists k1 = OK,d(1) and b ∈ Rd such that

k1QN + Bd
∞ (0, k1) + b ⊃ Bd

∞ (0, 10N) .

Using the symmetry of QN , we may remove the shift by b:

2k1QN + Bd
∞ (0, 2k1) ⊃ Bd

∞ (0, 10N) .

Hence, there exists a set F ′N ⊂ Bd
∞ (0, 2k1) with |F ′N | ≤ |FN | such that

FN ⊂ 2k1QN + F ′N .

Letting k = 2k1 + 1 we �nd that AN ⊂ FN +QN ⊂ F ′N + kQN .

12 / 16



Problem: The sets FN may fail to be uniformly bounded as N →∞.

Claim 1. There exist �nite sets F ′N with |F ′N | ≤ h and F ′N ⊂ Bd
∞ (0, OK(1)) as well

as a positive integer k = OK,d(1) such that FN +QN ⊂ F ′N + kQN for all N ∈ N.

Proof: Without loss of generality, FN ⊂ Bd
∞ (0, 5N). Since A is 1-relatively dense,

Bd
∞ (0, N) ⊂ AN + Bd

∞ (0, 1) ⊂ FN +QN + Bd
∞ (0, 1) .

Hence, by the union bound,

λ
(
QN + Bd

∞ (0, 1)
)
≥ λ

(
Bd
∞ (0, N)

)
/h.

From Macbeath's theorem, there exists k1 = OK,d(1) and b ∈ Rd such that

k1QN + Bd
∞ (0, k1) + b ⊃ Bd

∞ (0, 10N) .

Using the symmetry of QN , we may remove the shift by b:

2k1QN + Bd
∞ (0, 2k1) ⊃ Bd

∞ (0, 10N) .

Hence, there exists a set F ′N ⊂ Bd
∞ (0, 2k1) with |F ′N | ≤ |FN | such that

FN ⊂ 2k1QN + F ′N .

Letting k = 2k1 + 1 we �nd that AN ⊂ FN +QN ⊂ F ′N + kQN .

12 / 16



De�nition: Let ΛN < Rd+e be the group spanned by

vNi =
(
aNi , ~ei/`i

)
, (1 ≤ i ≤ e), (2)

where ~ei = the i-th vector in the standard basis of Re.

Claim 2. For each N ∈ N it holds that

AN ⊂ F ′N + π1

(
ΛN ∩ (Rd × B̄e

∞ (0, k))
)
. (3)

Proof: Pick any N and any x ∈ kQN . Then x can be written as

x =

e∑
i=1

nia
N
i ,

where |ni| ≤ k`Ni for all 1 ≤ i ≤ e. Hence, x is the �rst coordinate of the point(
x,

e∑
i=1

(ni/`
N
i )~ei

)
∈ ΛN ∩

(
Rd × B̄e

∞ (0, k)
)
.

It follows that (3) holds:

AN ⊂ F ′N + kQN ⊂ F ′N + π1

(
ΛN ∩

(
Rd × B̄e

∞ (0, k)
))

.
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Claim 3. There exists r > 0 such that ΛN is r-uniformly discrete for each N .

Proof: Suppose that ΛN is not 1/M -uniformly discrete. Pick a u ∈ ΛN with
‖u‖∞ < 1/M . Let integers ni and vector c be de�ned by

u =

e∑
i=1

niv
N
i , and c :=

e∑
i=1

nia
N
i = π1(u). (4)

Combining (2) and (4), we see that

‖c‖∞ < 1/M, and |ni| < `i/M for 1 ≤ i ≤ e. (5)

Hence, ±c,±2c, . . . ,±Mc ∈ QN ∩ Bd
∞ (0, 1). Let B ⊂ A be a maximal 2-separated

subset and BN := B ∩ Bd
∞ (0, N) . Since QN ⊂ 2AN − 2AN and BN ⊂ AN ,

mc+ b ∈ 3AN − 2AN for all −M ≤ m ≤M and b ∈ BN .

Since all of these points are distinct,

|3AN − 2AN | ≥ (2M + 1) |BN |

Conversely, by Plünnecke inequality,

|3AN − 2AN | ≤ K5 |AN | .

Consequently, M ≤ K5 |AN | / |BN |, which leads to contradiction if M is large enough.
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De�nition: A sequence of sets Xn ⊂ Rd converges (in Fell topology) to X ⊂ Rd if for
each ε > 0 there exists n such that for each n ≥ n0, Xn ∩Be

∞ (0, 1/ε) ⊂ X + Be
∞ (0, ε)

and X ∩ Be
∞ (0, 1/ε) ⊂ Xn + Be

∞ (0, ε) .

Passing to a subsequence, we may assume:

ΛN → Λ as N →∞ for some set Λ ⊂ Rd;

F ′N → F ′ as N →∞ for some set F ′ ⊂ Rd.

Claim 4. The set Λ is a discrete subgroup of Rd × Re, F ′ is �nite and

A ⊂ F ′ + π1

(
Λ ∩

(
Rd × B̄e

∞ (0, k)
))

. (6)

Proof: Because the relevant properties are preserved under limits:

Λ is a r-uniformly discrete (with r from Claim 3);

Λ is a subgroup of Rd;

|F ′| ≤ h (where h is the cardinality of FN ).

Take any point x ∈ A. Then x ∈ AN for all large N . By Claim 2, there are yN ∈ F ′N
and zN ∈ ΛN ∩

(
Rd × B̄e

∞ (0, k)
)
such that

x = yN + π1(zN )

By Claim 1, yN are bounded as N →∞, and hence so are zN . We may assume that
yN → y ∈ F ′ and zN → z ∈ Λ as N →∞. Notice that z ∈ Rd × B̄e

∞ (0, k) and
x = y + π1(z). Hence, (6) follows.
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Thank You for Your attention!
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