QUASICRYSTALS FROM THE POINT OF VIEW OF Additive Combinatorics

Jakub Konieczny

Université de Lyon Jagiellonian University

12 March 2021, Jagiellonian University

◆□> ◆□> ◆目> ◆目> ◆日> ● ●

Crystals

Figure: Salt crystal and the corresponding arrangement of molecules.

Crystals

Figure: Salt crystal and the corresponding arrangement of molecules.

- Crystals are periodic arrangements of molecules.
- Possible symmetry groups are highly constrained.
- Mathematically, we are simply looking at lattices.

Quasicrystals

Figure: A photography of a piece of Ho-Mg-Zn, and surface potential for Al-Pd-Mn.

Quasicrystals

Figure: A photography of a piece of Ho-Mg-Zn, and surface potential for Al-Pd-Mn.

- Quasicrystals exhibit approximate translation and rotation symmetries.
- Possible symmetry groups are much richer than for crystals.
- Mathematical description becomes considerably less trivial.

Penrose tiling

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 9 Q (や 4 / 16

Penrose tiling

- Penrose constructed a quasiperiodic tiling of the plane with 2 tiles.
- Additionally there is a 5-fold approximate rotational symmetry.

Basic notation and terminology

Fix dimension $d \ge 1$. For $x = (x_i)_{i=1}^d \in \mathbb{R}^d$, R > 0, let

$$\mathcal{B}_{\infty}^{d}(x,R) = \prod_{i=1}^{d} (x_i - R, x_i + R)$$

denote the ℓ^{∞} ball centred at x. Let λ denote the Lebesgue measure.

Basic notation and terminology

Fix dimension $d \ge 1$. For $x = (x_i)_{i=1}^d \in \mathbb{R}^d$, R > 0, let

$$\mathcal{B}_{\infty}^{d}(x,R) = \prod_{i=1}^{d} (x_{i} - R, x_{i} + R)$$

denote the ℓ^{∞} ball centred at x. Let λ denote the Lebesgue measure.

- Let $A \subset \mathbb{R}^d$ for some $d \ge 1$, and let R, r > 0. Then A is
 - *R*-relatively dense if $\mathcal{B}^d_{\infty}(x, R) \cap A \neq \emptyset$ for each $x \in \mathbb{R}^d$;
 - *r*-uniformly discrete if $\mathcal{B}^d_{\infty}(x,r) \cap A = \{x\}$ for each $x \in A$.

Accordingly, A is relatively dense if there exists R > 0 such that A is R-relatively dense. Likewise, A is uniformly discrete if there exists r > 0 such that A is r-uniformly discrete. If A is both relatively dense and uniformly discrete then A is a Delone set.

Basic notation and terminology

Fix dimension $d \ge 1$. For $x = (x_i)_{i=1}^d \in \mathbb{R}^d$, R > 0, let

$$\mathcal{B}_{\infty}^{d}(x,R) = \prod_{i=1}^{d} (x_{i} - R, x_{i} + R)$$

denote the ℓ^{∞} ball centred at x. Let λ denote the Lebesgue measure.

Let $A \subset \mathbb{R}^d$ for some $d \ge 1$, and let R, r > 0. Then A is

- *R*-relatively dense if $\mathcal{B}^d_{\infty}(x, R) \cap A \neq \emptyset$ for each $x \in \mathbb{R}^d$;
- *r*-uniformly discrete if $\mathcal{B}^d_{\infty}(x,r) \cap A = \{x\}$ for each $x \in A$.

Accordingly, A is relatively dense if there exists R > 0 such that A is R-relatively dense. Likewise, A is uniformly discrete if there exists r > 0 such that A is r-uniformly discrete. If A is both relatively dense and uniformly discrete then A is a Delone set.

We define the lower and upper uniform densities of A as

$$D^{+}(A) = \limsup_{R \to \infty} \sup_{x \in X} \frac{\left| A \cap \mathcal{B}_{\infty}^{d}(x, R) \right|}{\lambda \left(\mathcal{B}_{\infty}^{d}(x, R) \right)}, \quad D^{-}(A) = \liminf_{R \to \infty} \inf_{x \in X} \frac{\left| A \cap \mathcal{B}_{\infty}^{d}(x, R) \right|}{\lambda \left(\mathcal{B}_{\infty}^{d}(x, R) \right)},$$

If A is relatively dense then $D^{-}(A) > 0$. If A is uniformly discrete then $D^{+}(A) < \infty$.

Cut-and-project sets

Definition: Let $d, e \in \mathbb{N}_0$. For a discrete subgroup $\Gamma < \mathbb{R}^{d+e}$ and a "window" $\Omega \subset \mathbb{R}^e$, we define the corresponding *cut-and-project* set

$$\Lambda(\Gamma,\Omega) := \pi_1\left(\Gamma \cap \pi_2^{-1}(\Omega)\right),\,$$

where $\pi_1 \colon \mathbb{R}^{d+e} \to \mathbb{R}^d$ and $\pi_2 \colon \mathbb{R}^{d+e} \to \mathbb{R}^e$ are the projections. The window Ω needs to be topologically "nice"; here, we require that Ω is compact and $\Omega = \operatorname{clint} \Omega$.

Cut-and-project sets

Definition: Let $d, e \in \mathbb{N}_0$. For a discrete subgroup $\Gamma < \mathbb{R}^{d+e}$ and a "window" $\Omega \subset \mathbb{R}^e$, we define the corresponding *cut-and-project* set

$$\Lambda(\Gamma,\Omega) := \pi_1\left(\Gamma \cap \pi_2^{-1}(\Omega)\right),\,$$

where $\pi_1 \colon \mathbb{R}^{d+e} \to \mathbb{R}^d$ and $\pi_2 \colon \mathbb{R}^{d+e} \to \mathbb{R}^e$ are the projections. The window Ω needs to be topologically "nice"; here, we require that Ω is compact and $\Omega = \operatorname{clint} \Omega$.

Figure: The red dots form a cut-and-project set.

Minimality assumptions: Γ is a lattice, π_1 is injective on Γ , $\pi_2(\Gamma)$ is dense. \mathbb{P}

Cut-and-project sets have many properties that we would expect of a quasicrystal:

- They are Delone sets;
- They are approximately shift-invariant;
- They have a finite number of "local patches".

Cut-and-project sets have many properties that we would expect of a quasicrystal:

- They are Delone sets;
- They are approximately shift-invariant;
- They have a finite number of "local patches".

Idea: For $A, B \subset \mathbb{R}^d$, let $A \pm B = \{a \pm b : a \in A, b \in B\}$. If A is a model of a quasicrystal, we expect A - A to not be very large. We want to develop a theory that describes this type of sets.

イロト イヨト イヨト イヨト 二日

7/16

Cut-and-project sets have many properties that we would expect of a quasicrystal:

- They are Delone sets;
- They are approximately shift-invariant;
- They have a finite number of "local patches".

Idea: For $A, B \subset \mathbb{R}^d$, let $A \pm B = \{a \pm b : a \in A, b \in B\}$. If A is a model of a quasicrystal, we expect A - A to not be very large. We want to develop a theory that describes this type of sets.

イロト イヨト イヨト イヨト 二日

7 / 16

Theorem (Meyer; Lagarias; Nir & Olevskii)

Let $A \subset \mathbb{R}^d$ be relatively dense. Then the following conditions are equivalent: **a** $D^+(A-A) < \infty;$

- **2** A A is uniformly discrete;
- **3** A is uniformly discrete and $A A \subset A + F$ for a finite set F;
- $\ \, \textbf{\textbf{\textbf{\textbf{\textbf{A}}}}} = M + F \ for \ a \ cut \ and \ project \ set \ M \ and \ a \ finite \ set \ F.$

Cut-and-project sets have many properties that we would expect of a quasicrystal:

- They are Delone sets;
- They are approximately shift-invariant;
- They have a finite number of "local patches".

Idea: For $A, B \subset \mathbb{R}^d$, let $A \pm B = \{a \pm b : a \in A, b \in B\}$. If A is a model of a quasicrystal, we expect A - A to not be very large. We want to develop a theory that describes this type of sets.

Theorem (Meyer; Lagarias; Nir & Olevskii)

Let $A \subset \mathbb{R}^d$ be relatively dense. Then the following conditions are equivalent: **a** $D^+(A-A) < \infty;$

- **2** A A is uniformly discrete;
- **3** A is uniformly discrete and $A A \subset A + F$ for a finite set F;
- $\ \, \textbf{\textbf{\textbf{\textbf{\textbf{\textbf{\textbf{\textbf{a}}}}}}}} = M + F \ \text{for a cut-and-project set } M \ \text{and a finite set } F.$

Definition: A *Meyer set* is a relatively dense set $A \subset \mathbb{R}^d$ that satisfies any of the equivalent conditions in the theorem above.

Cut-and-project sets have many properties that we would expect of a quasicrystal:

- They are Delone sets;
- They are approximately shift-invariant;
- They have a finite number of "local patches".

Idea: For $A, B \subset \mathbb{R}^d$, let $A \pm B = \{a \pm b : a \in A, b \in B\}$. If A is a model of a quasicrystal, we expect A - A to not be very large. We want to develop a theory that describes this type of sets.

Theorem (Meyer; Lagarias; Nir & Olevskii)

Let $A \subset \mathbb{R}^d$ be relatively dense. Then the following conditions are equivalent: **a** $D^+(A-A) < \infty$;

- $\bigcup_{A \to A} D (A A) < \infty,$
- **2** A A is uniformly discrete;
- **8** A is uniformly discrete and $A A \subset A + F$ for a finite set F;
- $\ \, \textbf{\textbf{\textbf{\textbf{\textbf{\textbf{\textbf{\textbf{a}}}}}}}} = M + F \ \text{for a cut-and-project set } M \ \text{and a finite set } F.$

Definition: A *Meyer set* is a relatively dense set $A \subset \mathbb{R}^d$ that satisfies any of the equivalent conditions in the theorem above.

Goal: We will show that this theorem follows from the Freiman-Ruzsa theorem.

Additive combinatorics

Setup: Let Z be an abelian group. Often, Z is one of \mathbb{Z} , $\mathbb{Z}/N\mathbb{Z}$, \mathbb{F}_p^n , etc. Let $A, B \subset Z$ be finite sets. Then the sum-set and difference set of A and B are:

 $A + B = \{a + b : a \in A, b \in B\}, A - B = \{a - b : a \in A, b \in B\}.$

More generally, for $k \in \mathbb{N}$, the k-fold sum-set of A is

 $kA = \{a_1 + a_2 + \dots + a_k : a_1, a_2, \dots, a_k \in A\}.$

Additive combinatorics

Setup: Let Z be an abelian group. Often, Z is one of \mathbb{Z} , $\mathbb{Z}/N\mathbb{Z}$, \mathbb{F}_p^n , etc. Let $A, B \subset Z$ be finite sets. Then the sum-set and difference set of A and B are:

 $A + B = \{a + b : a \in A, b \in B\}, A - B = \{a - b : a \in A, b \in B\}.$

More generally, for $k \in \mathbb{N}$, the k-fold sum-set of A is

$$kA = \{a_1 + a_2 + \dots + a_k : a_1, a_2, \dots, a_k \in A\}.$$

Question: What can be said about A + B? If we know something about A + B (resp. about A - B, or A + kB, etc.) what can be said about A and B?

Additive combinatorics

Setup: Let Z be an abelian group. Often, Z is one of \mathbb{Z} , $\mathbb{Z}/N\mathbb{Z}$, \mathbb{F}_p^n , etc. Let $A, B \subset Z$ be finite sets. Then the sum-set and difference set of A and B are:

 $A + B = \{a + b : a \in A, b \in B\}, A - B = \{a - b : a \in A, b \in B\}.$

More generally, for $k \in \mathbb{N}$, the k-fold sum-set of A is

$$kA = \{a_1 + a_2 + \dots + a_k : a_1, a_2, \dots, a_k \in A\}.$$

Question: What can be said about A + B? If we know something about A + B (resp. about A - B, or A + kB, etc.) what can be said about A and B?

- If $A, B \subset \mathbb{Z}$ then $|A + B| \ge |A| + |B| 1$ (with equality for arithmetic progressions of equal step);
- Cauchy-Davenport: If $A, B \subset \mathbb{Z}/N\mathbb{Z}$ with N prime then $|A+B| \ge \min(|A|+|B|-1, N);$
- Freiman's "3k − 4": If |A + A| ≤ 3 |A| − 4 then A is contained in arithmetic progression of length |A + A| − |A| + 1;
- Plünnecke: If $|A + B| \le K |A|$, then $|kB lB| \le K^{k+l} |A|$ for each $k, l \ge 0$.

Freiman–Ruzsa theorem

A generalised arithmetic progression (GAP) of rank d with steps $a_1, a_2, \ldots, a_d \in Z$ and side lengths $\ell_1, \ell_2, \ldots, \ell_d \in \mathbb{N}$ is

$$P = \{b + n_1 a_1 + n_2 a_2 + \dots + n_d a_d : 0 \le n_i \le \ell_i \text{ for all } i = 1, 2, \dots, d\},\$$

As a special case, there are symmetric generalised arithmetic progressions which take the form

 $P = \{n_1a_1 + n_2a_2 + \dots + n_da_d : |n_i| \le \ell_i \text{ for all } i = 1, 2, \dots, d\}.$

9/16

Freiman–Ruzsa theorem

A generalised arithmetic progression (GAP) of rank d with steps $a_1, a_2, \ldots, a_d \in Z$ and side lengths $\ell_1, \ell_2, \ldots, \ell_d \in \mathbb{N}$ is

$$P = \{b + n_1 a_1 + n_2 a_2 + \dots + n_d a_d : 0 \le n_i \le \ell_i \text{ for all } i = 1, 2, \dots, d\},\$$

As a special case, there are symmetric generalised arithmetic progressions which take the form

$$P = \{n_1 a_1 + n_2 a_2 + \dots + n_d a_d : |n_i| \le \ell_i \text{ for all } i = 1, 2, \dots, d\}.$$

Generalised arithmetic progressions have bounded doubling: $|P+P| \leq 2^d \, |P| \, .$

Freiman–Ruzsa theorem

A generalised arithmetic progression (GAP) of rank d with steps $a_1, a_2, \ldots, a_d \in Z$ and side lengths $\ell_1, \ell_2, \ldots, \ell_d \in \mathbb{N}$ is

$$P = \{b + n_1 a_1 + n_2 a_2 + \dots + n_d a_d : 0 \le n_i \le \ell_i \text{ for all } i = 1, 2, \dots, d\},\$$

As a special case, there are symmetric generalised arithmetic progressions which take the form

$$P = \{n_1 a_1 + n_2 a_2 + \dots + n_d a_d : |n_i| \le \ell_i \text{ for all } i = 1, 2, \dots, d\}.$$

Generalised arithmetic progressions have bounded doubling: $|P + P| \le 2^d |P|$.

Theorem (Freiman–Ruzsa)

Fix K > 0. Suppose that |A| = |B| = n and $|A + B| \le Kn$. Then there exists a generalised progression P of rank $O_K(1)$ and size $|P| = O_K(n)$ such that $A \subset P$.

More precisely: we can take P = F + Q where F is a finite set of size $O_K(1)$ and Q is a symmetric generalised arithmetic progression with $Q \subset 2A - 2A$.

Continuous variants

Setup: Let G be a compact abelian group, such as $\mathbb{Z}/N\mathbb{Z}$ or \mathbb{R}/\mathbb{Z} . Let μ_G denote the Haar measure on G. Let $A, B \subset G$ be compact sets. Then A + B, A - B, kA $(k \in \mathbb{N})$ are defined the same way as before.

Continuous variants

Setup: Let G be a compact abelian group, such as $\mathbb{Z}/N\mathbb{Z}$ or \mathbb{R}/\mathbb{Z} . Let μ_G denote the Haar measure on G. Let $A, B \subset G$ be compact sets. Then A + B, A - B, kA $(k \in \mathbb{N})$ are defined the same way as before.

イロト イポト イヨト イヨト 三日

10 / 16

Theorem (Kneser; Macbeath; Raikov)

Suppose that G is connected. Then $\mu_G(A+B) \ge \min(\mu_G(A) + \mu_G(B), 1)$.

Continuous variants

Setup: Let G be a compact abelian group, such as $\mathbb{Z}/N\mathbb{Z}$ or \mathbb{R}/\mathbb{Z} . Let μ_G denote the Haar measure on G. Let $A, B \subset G$ be compact sets. Then A + B, A - B, kA $(k \in \mathbb{N})$ are defined the same way as before.

Theorem (Kneser; Macbeath; Raikov)

Suppose that G is connected. Then $\mu_G(A+B) \ge \min(\mu_G(A) + \mu_G(B), 1)$.

Corollary

Let $A \subset [0,1]^d$ be a measurable set with measure $\varepsilon > 0$. Then there exists $k = k(d,\varepsilon) \in \mathbb{N}$ with $k = O(d/\varepsilon^2)$ and $b \in \mathbb{R}^d$ such that $kA \supset [0,1]^d + b$.

Proof.

Without loss of generality, A is compact, $0 \in A$. We run induction with respect to d.

• d = 1: Let $A_1 = A \mod \mathbb{Z}$. By Kneser, $k_1 A = \mathbb{R}/\mathbb{Z}$ for $k_1 = \lceil 1/\varepsilon \rceil$, so $k_1 A$ contains an integer $0 \neq m \leq k_1$. Let $A_2 = A \mod m\mathbb{Z}$, so $k_2 A_2 = \mathbb{R}/m\mathbb{Z}$ for $k_2 = m\lceil 1/\varepsilon \rceil$.

$$[0,m] \subset k_2 A - \{0,m,\ldots,k_2\} \subset k_2 A + k_1^2 A - k_2.$$

Thus, we can take $k(1,\varepsilon) = k_2 + k_1^2 \le 2\lceil 1/\varepsilon \rceil^2$.

d ≥ 2: The set k(1,ε)A contains a unit segment in each of the d basic directions. Hence, we can take k(d,ε) = dk(1,ε) ≤ 2d[1/ε]².

Characterisation of Meyer sets via the Freiman–Ruzsa Theorem

Theorem

Let $d \in \mathbb{N}$ and $A \subset \mathbb{R}^d$. Suppose that A is relatively dense and $D^+(A - A) < \infty$. Then there exists a finite set F and a cut-and-project set M such that $A \subset M + F$.

Characterisation of Meyer sets via the Freiman–Ruzsa Theorem

Theorem

Let $d \in \mathbb{N}$ and $A \subset \mathbb{R}^d$. Suppose that A is relatively dense and $D^+(A-A) < \infty$. Then there exists a finite set F and a cut-and-project set M such that $A \subset M + F$.

Proof: Without loss of generality, A is 1-relatively dense. For $N \in \mathbb{N}$, let

$$A_N := A \cap \mathcal{B}^d_\infty(0, N) \,.$$

The sets A_N have bounded doubling:

$$\limsup_{N \to \infty} \frac{|A_N - A_N|}{|A_N|} \le \limsup_{N \to \infty} \frac{\left| (A - A) \cap \mathcal{B}^d_{\infty}\left(0, 2N\right) \right|}{|A \cap \mathcal{B}^d_{\infty}\left(0, N\right)|} \le \frac{2^d D^+ (A - A)}{D^- (A)}.$$

イロト イヨト イヨト イヨト

11 / 16

Pick a constant K > 0 such that $|A_N - A_N| \le K |A_N|$ for all $N \in \mathbb{N}$.

Characterisation of Meyer sets via the Freiman–Ruzsa Theorem

Theorem

Let $d \in \mathbb{N}$ and $A \subset \mathbb{R}^d$. Suppose that A is relatively dense and $D^+(A - A) < \infty$. Then there exists a finite set F and a cut-and-project set M such that $A \subset M + F$.

Proof: Without loss of generality, A is 1-relatively dense. For $N \in \mathbb{N}$, let

$$A_N := A \cap \mathcal{B}^d_\infty(0, N) \,.$$

The sets A_N have bounded doubling:

$$\limsup_{N \to \infty} \frac{|A_N - A_N|}{|A_N|} \le \limsup_{N \to \infty} \frac{\left| (A - A) \cap \mathcal{B}^d_{\infty}\left(0, 2N\right) \right|}{|A \cap \mathcal{B}^d_{\infty}\left(0, N\right)|} \le \frac{2^d D^+ (A - A)}{D^- (A)}.$$

Pick a constant K > 0 such that $|A_N - A_N| \le K |A_N|$ for all $N \in \mathbb{N}$. By Freiman-Ruzsa: there are symmetric generalised arithmetic progressions Q_N of rank $e = O_K(1)$ and finite sets F_N with cardinality $h = |F_N| = O_K(1)$ such that

$$Q_N \subset 2A_N - 2A_N$$
 and $A_N \subset F_N + Q_N$.

We may write Q_N is the form

$$Q_N = \left\{ n_1 a_1^N + n_2 a_2^N + \dots + n_e a_e^N : |n_i| < \ell_i^N \text{ for all } 1 \le i \le e \right\}$$
(1)

 $\text{for some } a_1^N, a_2^N, \dots, a_e^N \in \mathbb{R}^d \text{ and } \ell_1^N, \ell_2^N, \dots, \ell_e^N \in \mathbb{N}_0. \quad \text{ for a product of } a \in \mathbb{R}^d \text{ and } \ell_1^N, \ell_2^N, \dots, \ell_e^N \in \mathbb{N}_0.$

11 / 16

Problem: The sets F_N may fail to be uniformly bounded as $N \to \infty$.

Problem: The sets F_N may fail to be uniformly bounded as $N \to \infty$.

Claim 1. There exist finite sets F'_N with $|F'_N| \leq h$ and $F'_N \subset \mathcal{B}^d_{\infty}(0, O_K(1))$ as well as a positive integer $k = O_{K,d}(1)$ such that $F_N + Q_N \subset F'_N + kQ_N$ for all $N \in \mathbb{N}$.

Problem: The sets F_N may fail to be uniformly bounded as $N \to \infty$.

Claim 1. There exist finite sets F'_N with $|F'_N| \leq h$ and $F'_N \subset \mathcal{B}^d_{\infty}(0, O_K(1))$ as well as a positive integer $k = O_{K,d}(1)$ such that $F_N + Q_N \subset F'_N + kQ_N$ for all $N \in \mathbb{N}$.

Proof: Without loss of generality, $F_N \subset \mathcal{B}^d_{\infty}(0, 5N)$. Since A is 1-relatively dense,

$$\mathcal{B}_{\infty}^{d}(0,N) \subset A_{N} + \mathcal{B}_{\infty}^{d}(0,1) \subset F_{N} + Q_{N} + \mathcal{B}_{\infty}^{d}(0,1).$$

Hence, by the union bound,

$$\lambda\left(Q_N + \mathcal{B}^d_{\infty}(0,1)\right) \ge \lambda\left(\mathcal{B}^d_{\infty}(0,N)\right)/h.$$

From Macbeath's theorem, there exists $k_1 = O_{K,d}(1)$ and $b \in \mathbb{R}^d$ such that

$$k_1Q_N + \mathcal{B}^d_{\infty}(0,k_1) + b \supset \mathcal{B}^d_{\infty}(0,10N)$$

Using the symmetry of Q_N , we may remove the shift by b:

$$2k_1Q_N + \mathcal{B}^d_{\infty}(0, 2k_1) \supset \mathcal{B}^d_{\infty}(0, 10N) \,.$$

Hence, there exists a set $F'_N \subset \mathcal{B}^d_\infty(0, 2k_1)$ with $|F'_N| \leq |F_N|$ such that

$$F_N \subset 2k_1Q_N + F'_N.$$

Letting $k = 2k_1 + 1$ we find that $A_N \subset F_N + Q_N \subset F'_N + kQ_N$.

12 / 16

Definition: Let $\Lambda_N < \mathbb{R}^{d+e}$ be the group spanned by

$$v_i^N = \left(a_i^N, \vec{e}_i/\ell_i\right), \qquad (1 \le i \le e), \tag{2}$$

where \vec{e}_i = the *i*-th vector in the standard basis of \mathbb{R}^e .

Definition: Let $\Lambda_N < \mathbb{R}^{d+e}$ be the group spanned by

$$v_i^N = \left(a_i^N, \vec{e}_i/\ell_i\right), \qquad (1 \le i \le e), \tag{2}$$

where \vec{e}_i = the *i*-th vector in the standard basis of \mathbb{R}^e .

Claim 2. For each $N \in \mathbb{N}$ it holds that

$$A_N \subset F'_N + \pi_1\left(\Lambda_N \cap \left(\mathbb{R}^d \times \bar{\mathcal{B}}^e_{\infty}\left(0,k\right)\right)\right).$$
(3)

Definition: Let $\Lambda_N < \mathbb{R}^{d+e}$ be the group spanned by

$$v_i^N = \left(a_i^N, \vec{e}_i/\ell_i\right), \qquad (1 \le i \le e), \tag{2}$$

where \vec{e}_i = the *i*-th vector in the standard basis of \mathbb{R}^e .

Claim 2. For each $N \in \mathbb{N}$ it holds that

$$A_N \subset F'_N + \pi_1\left(\Lambda_N \cap \left(\mathbb{R}^d \times \bar{\mathcal{B}}^e_\infty\left(0,k\right)\right)\right). \tag{3}$$

Proof: Pick any N and any $x \in kQ_N$. Then x can be written as

$$x = \sum_{i=1}^{e} n_i a_i^N$$

where $|n_i| \leq k \ell_i^N$ for all $1 \leq i \leq e$. Hence, x is the first coordinate of the point

$$\left(x, \sum_{i=1}^{e} (n_i/\ell_i^N) \vec{e}_i\right) \in \Lambda_N \cap \left(\mathbb{R}^d \times \vec{\mathcal{B}}_{\infty}^e(0,k)\right).$$

It follows that (3) holds:

$$A_N \subset F'_N + kQ_N \subset F'_N + \pi_1 \left(\Lambda_N \cap \left(\mathbb{R}^d \times \bar{\mathcal{B}}^e_\infty \left(0, k \right) \right) \right).$$

Claim 3. There exists r > 0 such that Λ_N is r-uniformly discrete for each N.

<ロト < 部ト < 言ト < 言ト < 言 > 言 の Q (~ 14 / 16 **Claim 3.** There exists r > 0 such that Λ_N is r-uniformly discrete for each N. Proof: Suppose that Λ_N is not 1/M-uniformly discrete. Pick a $u \in \Lambda_N$ with $||u||_{\infty} < 1/M$. Let integers n_i and vector c be defined by

$$u = \sum_{i=1}^{e} n_i v_i^N, \text{ and } c := \sum_{i=1}^{e} n_i a_i^N = \pi_1(u).$$
(4)

Combining (2) and (4), we see that

$$||c||_{\infty} < 1/M$$
, and $|n_i| < \ell_i/M$ for $1 \le i \le e$. (5)

Hence, $\pm c, \pm 2c, \ldots, \pm Mc \in Q_N \cap \mathcal{B}^d_{\infty}(0, 1)$. Let $B \subset A$ be a maximal 2-separated subset and $B_N := B \cap \mathcal{B}^d_{\infty}(0, N)$. Since $Q_N \subset 2A_N - 2A_N$ and $B_N \subset A_N$,

 $mc + b \in 3A_N - 2A_N$ for all $-M \le m \le M$ and $b \in B_N$.

Since all of these points are distinct,

$$|3A_N - 2A_N| \ge (2M + 1) |B_N|$$

Conversely, by Plünnecke inequality,

$$\left|3A_N - 2A_N\right| \le K^5 \left|A_N\right|.$$

Consequently, $M \leq K^5 |A_N| / |B_N|$, which leads to contradiction if M is large enough.

14 / 16

Definition: A sequence of sets $X_n \subset \mathbb{R}^d$ converges (in Fell topology) to $X \subset \mathbb{R}^d$ if for each $\varepsilon > 0$ there exists *n* such that for each $n \ge n_0$, $X_n \cap \mathcal{B}^e_{\infty}(0, 1/\varepsilon) \subset X + \mathcal{B}^e_{\infty}(0, \varepsilon)$ and $X \cap \mathcal{B}^e_{\infty}(0, 1/\varepsilon) \subset X_n + \mathcal{B}^e_{\infty}(0, \varepsilon)$. Definition: A sequence of sets $X_n \subset \mathbb{R}^d$ converges (in Fell topology) to $X \subset \mathbb{R}^d$ if for each $\varepsilon > 0$ there exists n such that for each $n \ge n_0$, $X_n \cap \mathcal{B}^e_{\infty}(0, 1/\varepsilon) \subset X + \mathcal{B}^e_{\infty}(0, \varepsilon)$ and $X \cap \mathcal{B}^e_{\infty}(0, 1/\varepsilon) \subset X_n + \mathcal{B}^e_{\infty}(0, \varepsilon)$.

Passing to a subsequence, we may assume:

- $\Lambda_N \to \Lambda$ as $N \to \infty$ for some set $\Lambda \subset \mathbb{R}^d$;
- $F'_N \to F'$ as $N \to \infty$ for some set $F' \subset \mathbb{R}^d$.

Definition: A sequence of sets $X_n \subset \mathbb{R}^d$ converges (in Fell topology) to $X \subset \mathbb{R}^d$ if for each $\varepsilon > 0$ there exists n such that for each $n \ge n_0$, $X_n \cap \mathcal{B}^e_{\infty}(0, 1/\varepsilon) \subset X + \mathcal{B}^e_{\infty}(0, \varepsilon)$ and $X \cap \mathcal{B}^e_{\infty}(0, 1/\varepsilon) \subset X_n + \mathcal{B}^e_{\infty}(0, \varepsilon)$.

Passing to a subsequence, we may assume:

- $\Lambda_N \to \Lambda$ as $N \to \infty$ for some set $\Lambda \subset \mathbb{R}^d$;
- $F'_N \to F'$ as $N \to \infty$ for some set $F' \subset \mathbb{R}^d$.

Claim 4. The set Λ is a discrete subgroup of $\mathbb{R}^d \times \mathbb{R}^e$, F' is finite and

$$A \subset F' + \pi_1 \left(\Lambda \cap \left(\mathbb{R}^d \times \bar{\mathcal{B}}^e_{\infty} \left(0, k \right) \right) \right).$$
(6)

Definition: A sequence of sets $X_n \subset \mathbb{R}^d$ converges (in Fell topology) to $X \subset \mathbb{R}^d$ if for each $\varepsilon > 0$ there exists n such that for each $n \ge n_0$, $X_n \cap \mathcal{B}^e_{\infty}(0, 1/\varepsilon) \subset X + \mathcal{B}^e_{\infty}(0, \varepsilon)$ and $X \cap \mathcal{B}^e_{\infty}(0, 1/\varepsilon) \subset X_n + \mathcal{B}^e_{\infty}(0, \varepsilon)$.

Passing to a subsequence, we may assume:

- $\Lambda_N \to \Lambda$ as $N \to \infty$ for some set $\Lambda \subset \mathbb{R}^d$;
- $F'_N \to F'$ as $N \to \infty$ for some set $F' \subset \mathbb{R}^d$.

Claim 4. The set Λ is a discrete subgroup of $\mathbb{R}^d \times \mathbb{R}^e$, F' is finite and

$$A \subset F' + \pi_1 \left(\Lambda \cap \left(\mathbb{R}^d \times \bar{\mathcal{B}}^e_{\infty} \left(0, k \right) \right) \right).$$
(6)

Proof: Because the relevant properties are preserved under limits:

- Λ is a *r*-uniformly discrete (with *r* from Claim 3);
- Λ is a subgroup of \mathbb{R}^d ;
- $|F'| \leq h$ (where h is the cardinality of F_N).

Take any point $x \in A$. Then $x \in A_N$ for all large N. By Claim 2, there are $y_N \in F'_N$ and $z_N \in \Lambda_N \cap (\mathbb{R}^d \times \overline{\mathcal{B}}^e_{\infty}(0, k))$ such that

$$x = y_N + \pi_1(z_N)$$

By Claim 1, y_N are bounded as $N \to \infty$, and hence so are z_N . We may assume that $y_N \to y \in F'$ and $z_N \to z \in \Lambda$ as $N \to \infty$. Notice that $z \in \mathbb{R}^d \times \bar{\mathcal{B}}^e_{\infty}(0,k)$ and $x = y + \pi_1(z)$. Hence, (6) follows.

THANK YOU FOR YOUR ATTENTION!