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The Classical van der Corput Difference Theorem

Definition

A sequence (xn)
∞
n=1 ⊆ [0, 1] is uniformly distributed if for any open

interval (a, b) ⊆ [0, 1] we have

lim
N→∞

1

N

∣∣∣{1 ≤ n ≤ N | xn ∈ (a, b)}
∣∣∣ = b − a. (1)

Theorem (van der Corput)

If (xn)
∞
n=1 ⊆ [0, 1] is such that (xn+h − xn (mod 1))∞n=1 is uniformly

distributed for every h ∈ N, then (xn)
∞
n=1 is itself uniformly

distributed.

Corollary

If α ∈ R is irrational, then (n2α (mod 1))∞n=1 is uniformly
distributed.
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Hilbertian van der Corput Difference Theorems 1/3

Theorem (HvdCDT1)

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying

lim
N→∞

1

N

N∑
n=1

⟨xn+h, xn⟩ = 0, (2)

for every h ∈ N, then

lim
N→∞

|| 1
N

N∑
n=1

xn|| = 0. (3)
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Hilbertian van der Corput Difference Theorems 2/3

Theorem (HvdCDT2)

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying

lim
h→∞

∣∣∣∣∣lim sup
N→∞

1

N

N∑
n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, , (4)

for every h ∈ N, then

lim
N→∞

|| 1
N

N∑
n=1

xn|| = 0. (5)
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Hilbertian van der Corput Difference Theorems 3/3

Theorem (HvdCDT3)

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying

lim
H→∞

1

H

H∑
h=1

∣∣∣∣∣lim sup
N→∞

1

N

N∑
n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, (6)

then

lim
N→∞

|| 1
N

N∑
n=1

xn|| = 0. (7)

Question

Why would we ever use HvdCDT1 or HvdCDT2 when they are
both corollaries of HvdCDT3?
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Applications of HvdCDTs 1/2

Theorem (Poincaré)

For any measure preserving system (X ,B, µ,T ), and any A ∈ B
with µ(A) > 0, there exists n ∈ N for which

µ(A ∩ T−nA) > 0. (8)

Does not need vdCDT.

Theorem (Furstenberg-Sárközy)

For any measure preserving system (X ,B, µ,T ), and any A ∈ B
with µ(A) > 0, there exists n ∈ N for which

µ(A ∩ T−n2A) > 0. (9)

Furstenbergs proof uses HvdCDT1.
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For any measure preserving system (X ,B, µ,T ), and any A ∈ B
with µ(A) > 0, there exists n ∈ N for which

µ(A ∩ T−nA) > 0. (8)

Does not need vdCDT.

Theorem (Furstenberg-Sárközy)
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Applications of HvdCDTs 2/2

Theorem (Furstenberg)

For any measure preserving system (X ,B, µ,T ), and any A ∈ B
with µ(A) > 0, there exists n ∈ N for which

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−ℓnA) > 0. (10)

Furstenberg’s proof uses an equivalent form of HvdCT3.

Other
proofs directly use HvdCT3.
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The Ergodic Hierarchy of Mixing 1/2

Definition

Let X = (X ,B, µ,T ) be a measure preserving system. If for every
A,B ∈ B we have

1 lim
N→∞

1
N

N∑
n=1

µ(A ∩ T−nB) = µ(A)µ(B), then X is ergodic.

2 lim
N→∞

1
N

N∑
n=1

|µ(A ∩ T−nB)− µ(A)µ(B)| = 0, then X is weakly

mixing.

3 IP∗ − lim
n→∞

µ(A ∩ T−nB) = µ(A)µ(B), then X is mildly mixing

4 lim
n→∞

µ(A ∩ T−nB) = µ(A)µ(B), then X is strongly mixing.
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The Ergodic Hierarchy of Mixing 2/2

Definition

Let X = (X ,B, µ,T ) be a measure preserving system. If there
exists a σ-algebra A such that {T−nA | A ∈ A , n ≥ 0} generates
B, and for every A,B ∈ A and n ≥ 1 we have
µ(A ∩ T−nB) = µ(A)µ(B), then X is Bernoulli.
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Symmetry and Mixing 1/2

Theorem

Let X = (X ,B, µ,T ) be a measure preserving system. If for every
A ∈ B we have

1 lim
N→∞

1
N

N∑
n=1

µ(A ∩ T−nA) = µ(A)2, then X is ergodic.

2 lim
N→∞

1
N

N∑
n=1

|µ(A ∩ T−nA)− µ(A)2| = 0, then X is weakly

mixing.

3 IP∗ − lim
n→∞

µ(A ∩ T−nA) = µ(A)2, then X is mildly mixing

4 lim
n→∞

µ(A ∩ T−nA) = µ(A)2, then X is strongly mixing.
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Symmetry and Mixing 2/2

Theorem

Let X = (X ,B, µ,T ) be a measure preserving system. If there
exists a σ-algebra A such that {T−nA | A ∈ A , n ≥ 0} generates
B, and for every A ∈ A and n ≥ 1 we have
µ(A ∩ T−nA) = µ(A)2, then X is Bernoulli.

Sohail Farhangi Connections between vdCDT and mixing



Hilbertian (Cesàro) vdCDTs Revisited

Theorem

Let (xn)
∞
n=1 ⊆ H be a bounded sequences. If

(i) lim
N→∞

1

N

N∑
n=1

⟨xn+h, xn⟩ = 0 for every h ∈ N, or

(ii) lim
h→∞

lim
N→∞

| 1
N

N∑
n=1

⟨xn+h, xn⟩| = 0, or

(iii) lim
H→∞

1

H

H∑
h=1

lim
N→∞

| 1
N

N∑
n=1

⟨xn+h, xn⟩| = 0, then lim
N→∞

|| 1
N

N∑
n=1

xn|| = 0.
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Bernoulli-Mixing vdCDT

Theorem (MvdCDT1)

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying

lim
N→∞

1

N

∞∑
n=1

⟨xn+h, xn⟩ = 0, (11)

for every h ∈ N, then (xn)
∞
n=1 is a nearly orthogonal sequence.
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Context of Nearly Mixing Sequences

One way to understand this result is to consider a new Hilbert
space H′, whose elements are sequences (xn)

∞
n=1 of vectors coming

from H.

Intuitively, we may let

⟨(xn)∞n=1, (yn)
∞
n=1⟩H′= lim

N→∞

1

N

N∑
n=1

⟨xn, yn⟩ (12)

be the inner product on H′. The hypothesis that

0 = lim
N→∞

1

N

∞∑
n=1

⟨xn+h, xn⟩ = ⟨Uh(xn)
∞
n=1, (xn)

∞
n=1⟩H′ , (13)

(cf .µ(A ∩ T−nA) = µ(A)2 ∀ A ∈ A , n ≥ 1)

for every h ∈ N verifies that {Uh(xn)
∞
n=1}∞h=0 is an orthonormal set

in H′, where U denotes the left shift operator.
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Strong Mixing vdCDT

Theorem (MvdCDT2)

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying

lim
h→∞

∣∣∣∣∣ limN→∞

1

N

∞∑
n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, (14)

then (xn)
∞
n=1 is a nearly strongly mixing sequence.

Let H′, ⟨·, ·, ⟩H′ , and U be as before. The given hypothesis implies

0 = lim
h→∞

⟨Uh(xn)
∞
n=1, (xn)

∞
n=1⟩H′ , (15)

(cf. lim
h→∞

µ(A ∩ T−nA) = µ(A)2 ∀ A ∈ B)

verifies that {Uh(xn)
∞
n=1}∞h=0 is a strongly mixing sequence in H′.
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Weak Mixing vdCDT

Theorem

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying

lim
H→∞

1

H

H∑
h=1

∣∣∣∣∣ limN→∞

1

N

∞∑
n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, (16)

then (xn)
∞
n=1 is a nearly weakly mixing sequence.

Let H′, ⟨·, ·, ⟩H′ , and U be as before.The given hypothesis implies

0 = lim
H→∞

1

H

H∑
h=1

|⟨Uh(xn)
∞
n=1, (xn)

∞
n=1⟩H′|, (17)

(cf. lim
H→∞

1

H

H∑
h=1

|µ(A ∩ T−nA)− µ(A)2| = 0 ∀ A ∈ B)

verifies that {Uh(xn)
∞
n=1}∞h=0 is a weakly mixing sequence in H′.
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Weak Mixing vdCDT

Theorem
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1

H

H∑
h=1

|⟨Uh(xn)
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n=1, (xn)
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H→∞

1

H

H∑
h=1
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n=1}∞h=0 is a weakly mixing sequence in H′.
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Properties of Nearly Weakly Mixing Sequences

Theorem

Let (xn)
∞
n=1 ⊆ H be a nearly weakly mixing sequence, (rn)

∞
n=1 ⊆ H

a compact sequence, and (cn)
∞
n=1 ⊆ C a compact sequence.

We
have

lim
N→∞

1

N

N∑
n=1

⟨xn, rn⟩ = 0 (18)

and

lim
N→∞

|| 1
N

N∑
n=1

cnxn|| = 0. (19)
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Properties of Nearly Strongly Mixing Sequences

Theorem

Let (xn)
∞
n=1 ⊆ H be a nearly strongly mixing sequence,

(rn)
∞
n=1 ⊆ H a rigid sequence, and (cn)

∞
n=1 ⊆ C a rigid sequence.

We have

lim
N→∞

1

N

N∑
n=1

⟨xn, rn⟩ = 0 (20)

and

lim
N→∞

|| 1
N

N∑
n=1

cnxn|| = 0. (21)
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A Question of Frantzikinakis

Let (X ,B, µ) be a probability space and let T , S : X → X be
measure preserving transformations. Suppose that the m.p.s.
(X ,B, µ,T ) has zero entropy and f , g ∈ L∞(X , µ).

(i) Is it true that the averages

lim
N→∞

1

N

N∑
n=1

T nf · Sp(n)g (22)

converge in L2(X , µ) when p(n) = n or p(n) = n2?

(ii) Is it true that for every A ∈ B with µ(A) > 0 there exists
n ∈ N such that

µ(A ∩ T−nA ∩ S−p(n)A) > 0 (23)

when p(n) = n or p(n) = n2?
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Applying MvdCDTs 1/3

Theorem

Let (X ,B, µ) be a probability space and let T , S : X → X be
measure preserving transformations. Suppose that the m.p.s.
(X ,B, µ,T ) is rigid, and that the m.p.s. (X ,B, µ, S) is totally
ergodic. Let (kn)

∞
n=1 ⊆ N be a sequence for which ((kn+h − kn)α

(mod 1))∞n=1 is uniformly distributed for every α ∈ R \Q.

(i) If f , g ∈ L∞(X , µ) are such that
∫
X
gdµ = 0, then

(T nf · Skng)∞n=1 is a nearly weakly mixing sequence in
L2(X , µ).
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Applying MvdCDTs 2/3

Theorem

(ii) For any f , g ∈ L∞(X , µ) we have

lim
N→∞

1

N

N∑
n=1

T nf · Skng = E[f |IT ]

∫
X

gdµ, (24)

where IT = {A ∈ B | T−1A = A} is the σ-algebra of
T -invariant sets and with norm-convergence.
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Applying MvdCDTs 3/3

Theorem

(iii) If A1,A2,A3 ∈ B then

lim
N→∞

1

N

N∑
n=1

µ(A1 ∩ T−nA2 ∩ S−knA3)

=µ(A3) lim
N→∞

1

N

N∑
n=1

µ(A1 ∩ T−nA2).

(iv) If ((kn+h − kn)α)
∞
n=1 is uniformly distributed in its orbit closure

for all α ∈ R then (i)-(iii) hold when (X ,B, µ, S) is ergodic.
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Applications to Uniform Distribution

See Section 4 in https://arxiv.org/abs/2106.01123 for applications
to uniform distribution.
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