Connections between van der Corput's Difference Theorem and the Ergodic Hierarchy of Mixing Properties

> Dynamical Systems Seminar at Jagiellonian University in Kraków

Based on https://arxiv.org/abs/2106.01123

Sohail Farhangi

March 18, 2022

Sohail Farhangi

Connections between vdCDT and mixing

The Classical van der Corput Difference Theorem

Definition

A sequence $(x_n)_{n=1}^{\infty} \subseteq [0,1]$ is uniformly distributed if for any open interval $(a,b) \subseteq [0,1]$ we have

$$\lim_{N\to\infty}\frac{1}{N}\Big|\{1\leq n\leq N\mid x_n\in(a,b)\}\Big|=b-a. \tag{1}$$

The Classical van der Corput Difference Theorem

Definition

A sequence $(x_n)_{n=1}^{\infty} \subseteq [0,1]$ is uniformly distributed if for any open interval $(a,b) \subseteq [0,1]$ we have

$$\lim_{N\to\infty}\frac{1}{N}\Big|\{1\leq n\leq N\mid x_n\in(a,b)\}\Big|=b-a. \tag{1}$$

Theorem (van der Corput)

If $(x_n)_{n=1}^{\infty} \subseteq [0,1]$ is such that $(x_{n+h} - x_n \pmod{1})_{n=1}^{\infty}$ is uniformly distributed for every $h \in \mathbb{N}$, then $(x_n)_{n=1}^{\infty}$ is itself uniformly distributed.

The Classical van der Corput Difference Theorem

Definition

A sequence $(x_n)_{n=1}^{\infty} \subseteq [0,1]$ is uniformly distributed if for any open interval $(a,b) \subseteq [0,1]$ we have

$$\lim_{N\to\infty}\frac{1}{N}\Big|\{1\leq n\leq N\mid x_n\in(a,b)\}\Big|=b-a. \tag{1}$$

Theorem (van der Corput)

If $(x_n)_{n=1}^{\infty} \subseteq [0,1]$ is such that $(x_{n+h} - x_n \pmod{1})_{n=1}^{\infty}$ is uniformly distributed for every $h \in \mathbb{N}$, then $(x_n)_{n=1}^{\infty}$ is itself uniformly distributed.

Corollary

If $\alpha \in \mathbb{R}$ is irrational, then $(n^2 \alpha \pmod{1})_{n=1}^{\infty}$ is uniformly distributed.

Sohail Farhangi

Connections between vdCDT and mixing

Theorem (HvdCDT1)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\langle x_{n+h},x_n\rangle=0, \qquad (2)$$

for every $h \in \mathbb{N}$, then

$$\lim_{N\to\infty} ||\frac{1}{N}\sum_{n=1}^N x_n|| = 0.$$

(3)

Hilbertian van der Corput Difference Theorems 2/3

Theorem (HvdCDT2)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{h\to\infty}\left|\limsup_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\langle x_{n+h},x_n\rangle\right|=0,,\qquad(4)$$

for every $h \in \mathbb{N}$, then

$$\lim_{N \to \infty} ||\frac{1}{N} \sum_{n=1}^{N} x_n|| = 0.$$
 (5)

Hilbertian van der Corput Difference Theorems 3/3

Theorem (HvdCDT3)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{H\to\infty}\frac{1}{H}\sum_{h=1}^{H}\left|\limsup_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\langle x_{n+h},x_{n}\rangle\right|=0,$$
 (6)

then

$$\lim_{N\to\infty} ||\frac{1}{N}\sum_{n=1}^N x_n|| = 0.$$

(7)

Hilbertian van der Corput Difference Theorems 3/3

Theorem (HvdCDT3)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{H\to\infty}\frac{1}{H}\sum_{h=1}^{H}\left|\limsup_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\langle x_{n+h},x_{n}\rangle\right|=0,$$
 (6)

then

$$\lim_{N \to \infty} ||\frac{1}{N} \sum_{n=1}^{N} x_n|| = 0.$$

Question

Why would we ever use HvdCDT1 or HvdCDT2 when they are both corollaries of HvdCDT3?

Sohail Farhangi

Connections between vdCDT and mixing

(7)

Theorem (Poincaré)

For any measure preserving system (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$u(A\cap T^{-n}A)>0.$$

Sohail Farhangi

Connections between vdCDT and mixing

(8)

Theorem (Poincaré)

For any measure preserving system (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$u(A\cap T^{-n}A)>0.$$

Does not need vdCDT.

(8)

Theorem (Poincaré)

For any measure preserving system (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$u(A\cap T^{-n}A)>0.$$

Does not need vdCDT.

Theorem (Furstenberg-Sárközy)

For any measure preserving system (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$u(A\cap T^{-n^2}A)>0.$$
(9)

A B A A B A

(8)

Theorem (Poincaré)

For any measure preserving system (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$u(A\cap T^{-n}A)>0.$$

Theorem (Furstenberg-Sárközy)

For any measure preserving system (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$\mu(A\cap T^{-n^2}A)>0.$$

Furstenbergs proof uses HvdCDT1.

(8)

(9)

Theorem (Furstenberg)

For any measure preserving system (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T^{-n}A \cap T^{-2n}A \cap \cdots \cap T^{-\ell n}A) > 0.$$
(10)

Furstenberg's proof uses an equivalent form of HvdCT3.

Theorem (Furstenberg)

For any measure preserving system (X, \mathcal{B}, μ, T) , and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists $n \in \mathbb{N}$ for which

$$\mu(A \cap T^{-n}A \cap T^{-2n}A \cap \cdots \cap T^{-\ell n}A) > 0.$$
(10)

Furstenberg's proof uses an equivalent form of HvdCT3. Other proofs directly use HvdCT3.

Definition

Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be a measure preserving system. If for every $A, B \in \mathcal{B}$ we have

$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\mu(A\cap T^{-n}B)=\mu(A)\mu(B), \text{ then } \mathcal{X} \text{ is ergodic.}$

Definition

Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be a measure preserving system. If for every $A, B \in \mathcal{B}$ we have a) $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mu(A \cap T^{-n}B) = \mu(A)\mu(B)$, then \mathcal{X} is ergodic. a) $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} |\mu(A \cap T^{-n}B) - \mu(A)\mu(B)| = 0$, then \mathcal{X} is weakly mixing.

Definition

Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be a measure preserving system. If for every $A, B \in \mathscr{B}$ we have $\lim_{N\to\infty} \lim_{n\to\infty} \frac{1}{N} \sum_{n=1}^{N} \mu(A \cap T^{-n}B) = \mu(A)\mu(B), \text{ then } \mathcal{X} \text{ is ergodic.}$ $Iim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{\infty} |\mu(A \cap T^{-n}B) - \mu(A)\mu(B)| = 0, \text{ then } \mathcal{X} \text{ is weakly}$ mixing. • $\mathsf{IP}^* - \lim_{n \to \infty} \mu(A \cap T^{-n}B) = \mu(A)\mu(B)$, then \mathcal{X} is mildly mixing

Definition

Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be a measure preserving system. If for every $A, B \in \mathscr{B}$ we have $\lim_{N\to\infty} \frac{1}{N} \sum_{i=1}^{n} \mu(A \cap T^{-n}B) = \mu(A)\mu(B), \text{ then } \mathcal{X} \text{ is ergodic.}$ $Iim_{N\to\infty} \frac{1}{N} \sum_{n=1} |\mu(A \cap T^{-n}B) - \mu(A)\mu(B)| = 0, \text{ then } \mathcal{X} \text{ is weakly}$ mixing. • $IP^* - \lim_{n \to \infty} \mu(A \cap T^{-n}B) = \mu(A)\mu(B)$, then \mathcal{X} is mildly mixing

 $\lim_{n\to\infty}\mu(A\cap T^{-n}B)=\mu(A)\mu(B), \text{ then } \mathcal{X} \text{ is strongly mixing.}$

Definition

Let $\mathcal{X} = (X, \mathscr{B}, \mu, T)$ be a measure preserving system. If there exists a σ -algebra \mathscr{A} such that $\{T^{-n}A \mid A \in \mathscr{A}, n \ge 0\}$ generates \mathscr{B} , and for every $A, B \in \mathscr{A}$ and $n \ge 1$ we have $\mu(A \cap T^{-n}B) = \mu(A)\mu(B)$, then \mathcal{X} is Bernoulli.

Theorem

Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be a measure preserving system. If for every $A \in \mathcal{B}$ we have $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mu(A \cap T^{-n}A) = \mu(A)^2$, then \mathcal{X} is ergodic.

Theorem

Let
$$\mathcal{X} = (X, \mathscr{B}, \mu, T)$$
 be a measure preserving system. If for every $A \in \mathscr{B}$ we have
a) $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mu(A \cap T^{-n}A) = \mu(A)^2$, then \mathcal{X} is ergodic.
b) $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} |\mu(A \cap T^{-n}A) - \mu(A)^2| = 0$, then \mathcal{X} is weakly mixing.

Theorem

Let
$$\mathcal{X} = (X, \mathscr{B}, \mu, T)$$
 be a measure preserving system. If for every $A \in \mathscr{B}$ we have
a) $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mu(A \cap T^{-n}A) = \mu(A)^2$, then \mathcal{X} is ergodic.
b) $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} |\mu(A \cap T^{-n}A) - \mu(A)^2| = 0$, then \mathcal{X} is weakly mixing.
c) $|D^*| = \lim_{N \to \infty} \mu(A \cap T^{-n}A) - \mu(A)^2$ then \mathcal{X} is mildly mixing.

3 $IP^* - \lim_{n \to \infty} \mu(A \cap T^{-n}A) = \mu(A)^2$, then $\mathcal X$ is mildly mixing

Theorem

Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be a measure preserving system. If for every $A \in \mathcal{B}$ we have $\lim_{N\to\infty} \lim_{\to\infty} \frac{1}{N} \sum_{A} \mu(A \cap T^{-n}A) = \mu(A)^2, \text{ then } \mathcal{X} \text{ is ergodic.}$ N $\lim_{N\to\infty} \frac{1}{N} \sum_{1} |\mu(A \cap T^{-n}A) - \mu(A)^2| = 0, \text{ then } \mathcal{X} \text{ is weakly}$ mixing. • $IP^* - \lim_{n \to \infty} \mu(A \cap T^{-n}A) = \mu(A)^2$, then \mathcal{X} is mildly mixing $\lim_{n\to\infty} \mu(A \cap T^{-n}A) = \mu(A)^2$, then \mathcal{X} is strongly mixing.

A B F A B F

Let $\mathcal{X} = (X, \mathcal{B}, \mu, T)$ be a measure preserving system. If there exists a σ -algebra \mathscr{A} such that $\{T^{-n}A \mid A \in \mathscr{A}, n \ge 0\}$ generates \mathscr{B} , and for every $A \in \mathscr{A}$ and $n \ge 1$ we have $\mu(A \cap T^{-n}A) = \mu(A)^2$, then \mathcal{X} is Bernoulli.

Hilbertian (Cesàro) vdCDTs Revisited

Theorem

Let $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a bounded sequences. If (i) $\lim_{N\to\infty} \frac{1}{N} \sum_{x_{n+h}, x_n} = 0$ for every $h \in \mathbb{N}$, or $(ii)\lim_{h\to\infty} \overline{\lim_{N\to\infty}} |\frac{1}{N} \sum^{N} \langle x_{n+h}, x_n \rangle| = 0, \text{ or }$ $(iii)\lim_{H\to\infty}\frac{1}{H}\sum_{N\to\infty}^{H}\frac{1}{N}\sum_{n\to\infty}^{N}|\frac{1}{N}\sum_{n=1}^{N}\langle x_{n+h},x_{n}\rangle|=0, \ then\lim_{N\to\infty}||\frac{1}{N}\sum_{n=1}^{N}x_{n}||=0.$

Connections between vdCDT and mixing

• • = • • = •

Theorem (MvdCDT1)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{\infty}\langle x_{n+h}, x_n\rangle = 0, \qquad (11)$$

for every $h \in \mathbb{N}$, then $(x_n)_{n=1}^{\infty}$ is a nearly orthogonal sequence.

Context of Nearly Mixing Sequences

One way to understand this result is to consider a new Hilbert space \mathcal{H}' , whose elements are sequences $(x_n)_{n=1}^{\infty}$ of vectors coming from \mathcal{H} .

Context of Nearly Mixing Sequences

One way to understand this result is to consider a new Hilbert space \mathcal{H}' , whose elements are sequences $(x_n)_{n=1}^{\infty}$ of vectors coming from \mathcal{H} . Intuitively, we may let

$$\langle (x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty} \rangle_{\mathcal{H}'} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \langle x_n, y_n \rangle$$
 (12)

be the inner product on \mathcal{H}' .

Context of Nearly Mixing Sequences

One way to understand this result is to consider a new Hilbert space \mathcal{H}' , whose elements are sequences $(x_n)_{n=1}^{\infty}$ of vectors coming from \mathcal{H} . Intuitively, we may let

$$\langle (x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty} \rangle_{\mathcal{H}'} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \langle x_n, y_n \rangle$$
 (12)

be the inner product on \mathcal{H}' . The hypothesis that

$$0 = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{\infty} \langle x_{n+h}, x_n \rangle = \langle U^h(x_n)_{n=1}^{\infty}, (x_n)_{n=1}^{\infty} \rangle_{\mathcal{H}'}, \qquad (13)$$

 $(cf.\mu(A\cap T^{-n}A) = \mu(A)^2 \ \forall \ A \in \mathscr{A}, n \geq 1)$

for every $h \in \mathbb{N}$ verifies that $\{U^h(x_n)_{n=1}^\infty\}_{h=0}^\infty$ is an orthonormal set in \mathcal{H}' , where U denotes the left shift operator.

Strong Mixing vdCDT

Theorem (MvdCDT2)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{h\to\infty}\left|\frac{\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{\infty}\langle x_{n+h}, x_n\rangle\right|=0,$$
(14)

then $(x_n)_{n=1}^{\infty}$ is a nearly strongly mixing sequence.

Connections between vdCDT and mixing

伺下 イヨト イヨト ニヨ

Strong Mixing vdCDT

Theorem (MvdCDT2)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{h\to\infty}\left|\frac{\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{\infty}\langle x_{n+h}, x_n\rangle\right|=0,$$
(14)

then $(x_n)_{n=1}^{\infty}$ is a nearly strongly mixing sequence.

Let \mathcal{H}' , $\langle \cdot, \cdot, \rangle_{\mathcal{H}'}$, and U be as before.

• • = • • = • =

Strong Mixing vdCDT

Theorem (MvdCDT2)

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{h\to\infty}\left|\frac{\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{\infty}\langle x_{n+h}, x_n\rangle\right|=0,$$
(14)

then $(x_n)_{n=1}^{\infty}$ is a nearly strongly mixing sequence.

Let \mathcal{H}' , $\langle \cdot, \cdot, \rangle_{\mathcal{H}'}$, and U be as before. The given hypothesis implies

$$0 = \lim_{h \to \infty} \langle U^h(x_n)_{n=1}^{\infty}, (x_n)_{n=1}^{\infty} \rangle_{\mathcal{H}'}, \qquad (15)$$

 $(\text{cf.}\lim_{h\to\infty}\mu(A\cap T^{-n}A)=\mu(A)^2 \,\,\forall\,\,A\in\mathscr{B})$

verifies that $\{U^h(x_n)_{n=1}^\infty\}_{h=0}^\infty$ is a strongly mixing sequence in \mathcal{H}' .

Weak Mixing vdCDT

Theorem

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{H\to\infty}\frac{1}{H}\sum_{h=1}^{H}\left|\frac{\overline{\lim}}{N\to\infty}\frac{1}{N}\sum_{n=1}^{\infty}\langle x_{n+h}, x_n\rangle\right|=0,$$
 (16)

then $(x_n)_{n=1}^{\infty}$ is a nearly weakly mixing sequence.

個人 시험시 시험시 이번

Weak Mixing vdCDT

Theorem

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{H\to\infty}\frac{1}{H}\sum_{h=1}^{H}\left|\frac{\lim_{N\to\infty}1}{N}\sum_{n=1}^{\infty}\langle x_{n+h}, x_n\rangle\right|=0,$$
 (16)

then $(x_n)_{n=1}^{\infty}$ is a nearly weakly mixing sequence.

Let \mathcal{H}' , $\langle \cdot, \cdot, \rangle_{\mathcal{H}'}$, and U be as before.

Weak Mixing vdCDT

Sohail Farhangi

Theorem

If $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ is a bounded sequence satisfying

$$\lim_{H\to\infty}\frac{1}{H}\sum_{h=1}^{H}\left|\frac{\lim_{N\to\infty}1}{N}\sum_{n=1}^{\infty}\langle x_{n+h}, x_n\rangle\right|=0,$$
 (16)

then $(x_n)_{n=1}^{\infty}$ is a nearly weakly mixing sequence.

Let $\mathcal{H}',\ \langle\cdot,\cdot,\rangle_{\mathcal{H}'},$ and U be as before.The given hypothesis implies

$$0 = \lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} |\langle U^h(x_n)_{n=1}^{\infty}, (x_n)_{n=1}^{\infty} \rangle_{\mathcal{H}'}|, \qquad (17)$$

Connections between vdCDT and mixing

(cf. $\lim_{H \to \infty} \frac{1}{H} \sum_{h=1}^{H} |\mu(A \cap T^{-n}A) - \mu(A)^2| = 0 \ \forall \ A \in \mathscr{B}$) verifies that $\{U^h(x_n)_{n=1}^{\infty}\}_{h=0}^{\infty}$ is a weakly mixing sequence in \mathcal{H}' .

Properties of Nearly Weakly Mixing Sequences

Theorem

Let $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a nearly weakly mixing sequence, $(r_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a compact sequence, and $(c_n)_{n=1}^{\infty} \subseteq \mathbb{C}$ a compact sequence.

Connections between vdCDT and mixing

Properties of Nearly Weakly Mixing Sequences

Theorem

Let $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a nearly weakly mixing sequence, $(r_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a compact sequence, and $(c_n)_{n=1}^{\infty} \subseteq \mathbb{C}$ a compact sequence. We have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\langle x_n,r_n\rangle=0$$
(18)

Properties of Nearly Weakly Mixing Sequences

Theorem

Let $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a nearly weakly mixing sequence, $(r_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a compact sequence, and $(c_n)_{n=1}^{\infty} \subseteq \mathbb{C}$ a compact sequence. We have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \langle x_n, r_n \rangle = 0$$
 (18)

and

$$\lim_{N \to \infty} ||\frac{1}{N} \sum_{n=1}^{N} c_n x_n|| = 0.$$
 (19)

Properties of Nearly Strongly Mixing Sequences

Theorem

Let $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a nearly strongly mixing sequence, $(r_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a rigid sequence, and $(c_n)_{n=1}^{\infty} \subseteq \mathbb{C}$ a rigid sequence.

Connections between vdCDT and mixing

A E A E A

Properties of Nearly Strongly Mixing Sequences

Theorem

Let $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a nearly strongly mixing sequence, $(r_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a rigid sequence, and $(c_n)_{n=1}^{\infty} \subseteq \mathbb{C}$ a rigid sequence. We have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\langle x_n,r_n\rangle=0$$
(20)

• • = • • = •

Properties of Nearly Strongly Mixing Sequences

Theorem

Let $(x_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ be a nearly strongly mixing sequence, $(r_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ a rigid sequence, and $(c_n)_{n=1}^{\infty} \subseteq \mathbb{C}$ a rigid sequence. We have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\langle x_n,r_n\rangle=0$$
(20)

and

$$\lim_{N \to \infty} ||\frac{1}{N} \sum_{n=1}^{N} c_n x_n|| = 0.$$
 (21)

• • = • • = •

A Question of Frantzikinakis

Let (X, \mathscr{B}, μ) be a probability space and let $T, S : X \to X$ be measure preserving transformations. Suppose that the m.p.s. (X, \mathscr{B}, μ, T) has zero entropy and $f, g \in L^{\infty}(X, \mu)$. (i) Is it true that the averages

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^n f \cdot S^{p(n)} g$$
(22)

converge in $L^2(X, \mu)$ when p(n) = n or $p(n) = n^2$?

(ii) Is it true that for every $A \in \mathscr{B}$ with $\mu(A) > 0$ there exists $n \in \mathbb{N}$ such that

$$\mu(A \cap T^{-n}A \cap S^{-p(n)}A) > 0 \tag{23}$$

when p(n) = n or $p(n) = n^{2}$?

Let (X, \mathcal{B}, μ) be a probability space and let $T, S : X \to X$ be measure preserving transformations. Suppose that the m.p.s. (X, \mathcal{B}, μ, T) is rigid, and that the m.p.s. (X, \mathcal{B}, μ, S) is totally ergodic. Let $(k_n)_{n=1}^{\infty} \subseteq \mathbb{N}$ be a sequence for which $((k_{n+h} - k_n)\alpha$ $(\text{mod } 1))_{n=1}^{\infty}$ is uniformly distributed for every $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

• • = • • = •

Let (X, \mathscr{B}, μ) be a probability space and let $T, S : X \to X$ be measure preserving transformations. Suppose that the m.p.s. (X, \mathscr{B}, μ, T) is rigid, and that the m.p.s. (X, \mathscr{B}, μ, S) is totally ergodic. Let $(k_n)_{n=1}^{\infty} \subseteq \mathbb{N}$ be a sequence for which $((k_{n+h} - k_n)\alpha$ $(\text{mod } 1))_{n=1}^{\infty}$ is uniformly distributed for every $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. If $f, g \in L^{\infty}(X, \mu)$ are such that $\int_X gd\mu = 0$, then $(T^n f \cdot S^{k_n}g)_{n=1}^{\infty}$ is a nearly weakly mixing sequence in $L^2(X, \mu)$.

(ii) For any
$$f,g \in L^{\infty}(X,\mu)$$
 we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}T^{n}f\cdot S^{k_{n}}g=\mathbb{E}[f|\mathcal{I}_{T}]\int_{X}gd\mu,\qquad(24)$$

where $\mathcal{I}_T = \{A \in \mathscr{B} \mid T^{-1}A = A\}$ is the σ -algebra of T-invariant sets and with norm-convergence.

Applying MvdCDTs 3/3

Theorem

(iii) If $A_1, A_2, A_3 \in \mathscr{B}$ then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\mu(A_1\cap T^{-n}A_2\cap S^{-k_n}A_3)$$
$$=\mu(A_3)\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\mu(A_1\cap T^{-n}A_2).$$

Sohail Farhangi

Connections between vdCDT and mixing

- 4 同 ト 4 三 ト - 4 三 ト - -

Applying MvdCDTs 3/3

Theorem

(iii) If $A_1, A_2, A_3 \in \mathscr{B}$ then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\mu(A_1\cap T^{-n}A_2\cap S^{-k_n}A_3)$$
$$=\mu(A_3)\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\mu(A_1\cap T^{-n}A_2).$$

(iv) If $((k_{n+h} - k_n)\alpha)_{n=1}^{\infty}$ is uniformly distributed in its orbit closure for all $\alpha \in \mathbb{R}$ then (i)-(iii) hold when (X, \mathcal{B}, μ, S) is ergodic.

See Section 4 in https://arxiv.org/abs/2106.01123 for applications to uniform distribution.