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Problems

f: X — X, here X is a closed manifold of dim d.

Notation:

P"(f) ;= Fix (f") the set of points of period n,

Pa(F) := P"(F)\ Upjnen P*(F)
the set of points for which n is the minimal period, called shortly
n-periodic points.

o0 oo

P(f) = J P"(f) = Pa(f)

1 1

the set of all periodic points.
Per(f) :={neN: Py(f) # 0}

the set of minimal periods of f.
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Problems

Problems of dynamical systems:

19. Describe Per(f), in particular when #Per(f) =, or

Per(f) = N.
20 Give an estimate from below of #P"(f), #P,(f),
3° Give an estimate from above of #P"(f), # (f) ,

4% Give an estimate from below of limsup #P"(f),

5° Give an estimate from above of limsup #P"(f).
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Theorem (Shub & Sullivan 1974)

f: X — X suchthat {L(f")}{° is unbounded
If feC' then #P(f) = o

Lefschetz-Hopf formula

L(F) =Ind(F",X) = > Ind(f",x)
x€Fix (f")

Main step: f € C!, f(0) = 0 = {Ind(f",0)} is bounded
provided it is defined.

Chow & Mallet-Paret & Yorke (81): the sequence is periodic of a
period k defined by o(Df(0)).
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Conjecture (Shub 1974)

limsup /#P"(f) > limsup /|L(f")| = pes > 1 if{L(f")} is unb.

The rate of growth is at least exponential.

Theorem (Babenko & Bogatyi 1991)

f: X —X,d=dimX, and f € C1. Assume: {L(f")}$° is unb.
Then 3 ng = no(f) such that ¥ n > ng

n—ng
#Or(f,n) ZW;

where D := dim H*(X; R)

In particular, since #P"(f) > #Or(f, n) we have at least linear
rate of growth of #P"(f)
which does not follow from the Shub conjecture.
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Results for the sphere maps

Theorem ([JJWM1])

Let g : S9 89 d>1, be a free homeomorphism of finite order
m>1, and f : S — S? be a map that commutes with g.
Suppose that deg(f) ¢ {—1, 0, 1}. Then forV k € N we have

#Fix (Fkm) > m? K’

k' is as in Definition [19]. In particular, for k = m® we have

s+1

#Fix (f™) > m**2.

For S9, d > 1, {L(f¥)}3° is unbounded iff deg(f) # 0, £1.
Corollary ([JJWM1])

Let f: S9 — S9 be a continuous map with {L(f")}$° unbounded.
If f commutes with a free homeomorphism g : S9 — S? of order
m > 1, then the set Per(f) of minimal periods of f and
consequently the set P(f) of periodic points are infinite.
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Eventually generalize for G-equivariant maps?
for G not cyclic, or infinite compact

1. Few class of groups: There exists a classification of finite
groups which can act free (act smoothly) on the spheres!!,
e.g. they do not contain Z, @ Z.

2. The only infinite groups acting free on S9 :

G =S N(SY) c S3 s3.

3. If f: M — M is G-equivariant, M any compact manifold, G
infinite compact, then L(f) = 0, consequently L(f*) = 0 for
vV k.

4. For the problem of existence of infinitely many periodic points,
one can always restrict the action to a cyclic subgroup of G.

Note that in the the simplest case G = Z, or G = Z,, the orbit
space sd /G is the real projective space, or a lens space.
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Results for the sphere maps

The idea of proof

@ The general idea of the proofs of the stated Theorems is to
study a map f : M — M of the quotient space M := S9/Z,,
induced by the Z,-equivariant map f : S¢ — 5% in the
problem.

@ Next we estimate the number of periodic points of f, and we
"lift" them to periodic points of f.

e To study periodic points of the induced map f we use the
Nielsen theory adapted to this situation.

@ It is worth pointing out that a direct application of the Nielsen
number of iterations is inefficient since

N(f") < #m1(M) = is finite for many M
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Equivariant maps

Below we include some facts about equivariant maps

Proposition (Borsuk-Ulam)

Suppose that Z, acts freely on S, d > 1. If f : S — S% js an
equivariant map, then deg(f) =1 mod m. O

For m = 2, this is the classical Borsuk-Ulam theorem which states
that an odd map has odd degree .
f, h:S% — S9 are homotopic <= deg f = deg h.

Theorem (C, Bowszyc, R. Rubinsztein, [Rub].)

Suppose that a finite group G acts freely on S, d > 1.

Then the natural map [S?, S% ¢ — [S9, S9] is an injection, i.e. if
two equivariant mappings have the same degree, then they are
equivariantly homotopic.

Moreover the image of [S9,5% ¢ in [S?,S9] = Z is equal to
{mZ +1}.
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Equivariant maps

Comments
Note that taking the suspension of the map f : S! — S1,
f(z) =z", |r] > 2 (with oo many periodic points) we get a map
Y f of S% with the same dynamics as z".

On the other hand, the Shub example gives a map of S? which is a
small perturbation of X f but has only two non-wandering points.

(Note that the Shub example is not Zs-equivariant)

The stated Theorems say that any small equivariant perturbation,
or more generally any equivariant continuous deformation of f
must possess infinitely many periodic points.
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In this section we denote by p : X — X a universal covering of X.
For a G-space X with a free action of a finite group G and a map
X — X = X/G onto the orbit space we will denote the covering
p: X — X, opposite to the notation used here..

Let p: X — X be a universal covering of a polyhedron.

Ox = {a: X - X: pa=p}

is the group of deck transformations of this covering.

Let f : X — X be a map and let lift(f) = {f : X — X : pf = fp}
denote the set of all lifts of f.

If we fix a lift fy, then each other lift of f can be uniquely written
as afy, a € Ox.
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In [Jial] Boju Jiang introduced a number NFy(f) which is a
homotopy invariant and is the lower bound for #Fix ().

Theorem

For any self-map f : X — X of a finite polyhedron and a fixed
natural number k € N

#Fix(F) > Y (HIEOR(fT)) - r

rlk

where ZEOR(f") denotes the set of irreducible (Z) essential (€)
orbits (O) of Reidemeister (R ) classes of the map f'.
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Per. pts of self-map of the orbit
Lemma

<

v .
Consider the commutative diagram pl p

——

y -,y

where p: Y — Y s a finite regular covering of a fin. polyh. Y.
Then

ind (f) = r-ind (f; p(Fix(f)))

where r = #{a € Oy;fa = af} . In particular

ind (f; p(Fix (f))) # 0 if and only if L(f) = ind (f) # 0.

Oy denotes the group of covering transformations of the regular
covering p; exceptionally in this Lemma we do not need to assume

that the covering p is universal. 5
THIS LEMMA HOLDS "ALWAYS" (i.e. for every Y as above).
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Let f : M — M be the map induced by an equivariant map
f: S9 — S9 of degree # 0, +1. Then all the Reidemeister classes
of f and of all its iterations are essential.

IT is A KEY POINT which uses the fact that M = S9/G. In
general we need an information that

L(f) 20 = Vg e G, g#e, wehave L(gf)#0

or in a weaker form:
for co- many k (of a form which is related to m = |G|)

L(f5) £0 = Vg € G,g # e, wehave L(gf¥)#0.
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Lemma

If a self-map of the orbit space X = X /G, of a free action of a
finite group G, is induced by an equivariant map f : X — X then
the map Rz : R(fX) — R(fK) is the identity. Thus each orbit of
Reidemeister classes consists of exactly one element.

Lemma

The Reidemeister relation of the map f : X — f( induced by an
equivariant map f : X — X is trivial. Thus R(f) = Ox = Zp.

THESE LEMMAS also "HOLD ALWAYS".

Corollary

Iff: M— M (M= S9/Z,) is a map induced by an equivariant
map f : S — S9 then we have

#Fix (FX) > NFS(F) &S (#IR(F)) - r
rlk
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Corollary
Iff: X — X (X =X/Zm) is a map induced by an equivariant
map f : X — X, then we have

#Fix (F) = Y #{R(F):g € G: L(gf") # 0and[gf'] € TR(f")}.
rlk




Per. pts of self-map of the orbit

IN CONSEQUENCE "ALWAYS" we have

Corollary
Iff: X — X (X =X/Zm) is a map induced by an equivariant
map f : X — X, then we have

#Fix (F) = Y #{R(F):g € G: L(gf") # 0and[gf'] € TR(f")}.
rlk

Thus it remains to find the number of irreducible classes in R(f")
for such r (or for every r). Let us recall that the class A € R(f)
is reducible iff it belongs to the image of the map

it R(F') — R(F¥) foran I | k, | < k.
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Equivariant Nielsen theory for a free action on arbitrary M

Theorem ([JJWMZ2])
Let M be a finite polyhedron with a free action of a finite group G

and £ : MS&M an equivariant map. Then 3 an invariant
NFS(f) € {0} UN such that

@ NFS(f) is a G-homotopy invariant.
Q #Fix(gk) > NFS(f) for each g ~¢ f.

Let G = Zps where p is a prime and let n = p®.

Theorem ([JJWM2])

If for every k € N all the Reidemeister classes of [FX], where
f =1f/G, are essential then

#Fix(f*) > p? - p* =m-n.
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Dependence of k — NZ(f) on m

Definition 19

We say that a natural number r eventually divides m if r divides a
power m®. In other words r eventually divides m if and only if for a
prime number p

plr = p|m

We define k' as the greatest divisor of k dividing eventually m.

Let G be a finite abelian group, #G = m. Then

NF(f) = NF(f)

This gives the statement of the second theorem of previous slide.
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Algebraic computation of NF(f)

Assumption

Assume that every k € N all Reidemeister classes of ¥ are
essential.

Theorem

Let G =mX = ijl @ - @ Zpy, where py, ..., pr denote different

primes, be a cyclic group of order m = pj* - -- p2r. Then for k
eventually dividing m

km if m|k

ged(m, k) - m  otherwise

NFE(F) = {

If k does not event. divides m then NFC(f) =0 O




We recall that R(f¥) = Z, and Ina po[X] = [p*~# - x]. This implies
that:
Q all classes in OR(f) = R(f!) = Z,, are irreducible while for
a>1

@ [0] € R(fP") is reducible and the remaining p — 1 classes in
R(FP") are irreducible.



We recall that R(f¥) = Z, and Ina po[X] = [p*~# - x]. This implies
that:
Q all classes in OR(f) = R(f!) = Z,, are irreducible while for
a>1

@ [0] € R(fP") is reducible and the remaining p — 1 classes in
R(FP") are irreducible.

Proposition

Under the above assumptions (and « > 1)

NE2(F) = p+ > (p7F2 — pPth)
5

where the summation runs over the set
{BeZ0<B<a-1, L(f°)+£0}




Theorem

Let X be a simply-connected finite polyhedron with a free action
of a finite g. G and f : X — X be a G-equivariant map.
Assume that the action of G on H.(X; Q) is trivial.

If 3 a prime p | #G and 3 a € N such that

L(fpa) 20 mod (paH)

then f has infinitely many periodic points and

Iimsupﬁ%’:(f) >p.
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