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A symmetry of maps implies its chaos,
i.e. gives ∞ many periodic points
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f : X → X , here X is a closed manifold of dim d .

Notation:

Pn(f ) := Fix (f n) the set of points of period n ,
,

Pn(f ) := Pn(f ) \
⋃

k|n<n Pk(f )

the set of points for which n is the minimal period, called shortly
n-periodic points.

P(f ) :=
∞⋃
1

Pn(f ) =
∞⋃
1

Pn(f )

the set of all periodic points.

Per(f ) := {n ∈ N : Pn(f ) 6= ∅}

the set of minimal periods of f .
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Problems of dynamical systems:

10. Describe Per(f ), in particular when #Per(f ) =∞ , or
Per(f ) = N.

20 Give an estimate from below of #Pn(f ) , #Pn(f ) ,

30 Give an estimate from above of #Pn(f ), #Pn(f ) ,

40 Give an estimate from below of lim sup #Pn(f ) ,

50 Give an estimate from above of lim sup #Pn(f ) .
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Theorem (Shub & Sullivan 1974)

f : X → X such that {L(f n)}∞1 is unbounded

If f ∈ C 1 then #P(f ) = ∞

Lefschetz-Hopf formula

L(f n) = Ind(f n,X ) =
∑

x∈Fix (f n)

Ind(f n, x)

Main step: f ∈ C 1, f (0) = 0 =⇒ {Ind(f n, 0)} is bounded
provided it is defined.
Chow & Mallet-Paret & Yorke (81): the sequence is periodic of a
period k defined by σ(Df (0)).
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Conjecture (Shub 1974)

lim sup n
√

#Pn(f ) ≥ lim sup n
√
|L(f n)| = ρes > 1 if {L(f n)} is unb.

The rate of growth is at least exponential.

Theorem (Babenko & Bogatyi 1991)

f : X → X , d = dim X , and f ∈ C 1. Assume: {L(f n)}∞1 is unb.
Then ∃ n0 = n0(f ) such that ∀ n ≥ n0

#Or(f , n) ≥ n − n0

D 2[d+1/2]
,

where D := dim H∗(X ;R)

In particular, since #Pn(f ) ≥ #Or(f , n) we have at least linear
rate of growth of #Pn(f )
which does not follow from the Shub conjecture.
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Theorem ([JJWM1])

Let g : Sd → Sd , d ≥ 1, be a free homeomorphism of finite order
m > 1, and f : Sd → Sd be a map that commutes with g.
Suppose that deg(f ) /∈ {−1, 0, 1}. Then for ∀ k ∈ N we have

#Fix (f km) ≥ m2 k ′

k’ is as in Definition [19]. In particular, for k = ms we have

#Fix (f ms+1
) ≥ ms+2 .

For Sd , d ≥ 1, {L(f k)}∞1 is unbounded iff deg(f ) 6= 0,±1.

Corollary ([JJWM1])

Let f : Sd → Sd be a continuous map with {L(f n)}∞1 unbounded.
If f commutes with a free homeomorphism g : Sd → Sd of order
m > 1, then the set Per(f ) of minimal periods of f and
consequently the set P(f ) of periodic points are infinite.
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Eventually generalize for G -equivariant maps?
for G not cyclic, or infinite compact

1. Few class of groups: There exists a classification of finite
groups which can act free (act smoothly) on the spheres!!,
e.g. they do not contain Zp ⊕ Zp.

2. The only infinite groups acting free on Sd :
G = S1, N(S1) ⊂ S3, S3 .

3. If f : M → M is G -equivariant, M any compact manifold, G
infinite compact, then L(f ) = 0, consequently L(f k) = 0 for
∀ k .

4. For the problem of existence of infinitely many periodic points,
one can always restrict the action to a cyclic subgroup of G .

Remark

Note that in the the simplest case G = Z2, or G = Zm the orbit
space Sd/G is the real projective space, or a lens space.
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The idea of proof

The general idea of the proofs of the stated Theorems is to
study a map f̄ : M → M of the quotient space M := Sd/Zm

induced by the Zm-equivariant map f : Sd → Sd in the
problem.

Next we estimate the number of periodic points of f̄ , and we
”lift” them to periodic points of f .

To study periodic points of the induced map f̄ we use the
Nielsen theory adapted to this situation.

It is worth pointing out that a direct application of the Nielsen
number of iterations is inefficient since

N(f̄ n) ≤ #π1(M) = is finite for many M
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Below we include some facts about equivariant maps

Proposition (Borsuk-Ulam)

Suppose that Zm acts freely on Sd , d ≥ 1. If f : Sd → Sd is an
equivariant map, then deg(f ) ≡ 1 mod m . 2

For m = 2, this is the classical Borsuk-Ulam theorem which states
that an odd map has odd degree .
f , h : Sd → Sd are homotopic ⇐⇒ deg f = deg h.

Theorem (C, Bowszyc, R. Rubinsztein, [Rub].)

Suppose that a finite group G acts freely on Sd , d > 1.
Then the natural map [Sd ,Sd ]G → [Sd ,Sd ] is an injection, i.e. if
two equivariant mappings have the same degree, then they are
equivariantly homotopic.
Moreover the image of [Sd , Sd ]G in [Sd ,Sd ] = Z is equal to
{mZ+ 1}.
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Comments
Note that taking the suspension of the map f : S1 → S1,
f (z) = z r , |r | ≥ 2 (with ∞ many periodic points) we get a map
Σf of S2 with the same dynamics as z r .

On the other hand, the Shub example gives a map of S2 which is a
small perturbation of Σf but has only two non-wandering points.

(Note that the Shub example is not Z2-equivariant)

The stated Theorems say that any small equivariant perturbation,
or more generally any equivariant continuous deformation of f
must possess infinitely many periodic points.
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or more generally any equivariant continuous deformation of f
must possess infinitely many periodic points.



Abstract Problems Smoothness Results for the sphere maps Equivariant maps Nielsen Theory Per. pts of self-map of the orbit space Main theorems Bibliography

Comments
Note that taking the suspension of the map f : S1 → S1,
f (z) = z r , |r | ≥ 2 (with ∞ many periodic points) we get a map
Σf of S2 with the same dynamics as z r .

On the other hand, the Shub example gives a map of S2 which is a
small perturbation of Σf but has only two non-wandering points.

(Note that the Shub example is not Z2-equivariant)

The stated Theorems say that any small equivariant perturbation,
or more generally any equivariant continuous deformation of f
must possess infinitely many periodic points.



Abstract Problems Smoothness Results for the sphere maps Equivariant maps Nielsen Theory Per. pts of self-map of the orbit space Main theorems Bibliography

In this section we denote by p : X̃ → X a universal covering of X .
For a G -space X with a free action of a finite group G and a map
X → X̄ = X/G onto the orbit space we will denote the covering
p : X → X̄ , opposite to the notation used here..

Let p : X̃ → X be a universal covering of a polyhedron.

OX := {α : X̃ → X̃ : pα = p}

is the group of deck transformations of this covering.

Let f : X → X be a map and let lift(f ) = {f̃ : X̃ → X̃ : pf̃ = fp}
denote the set of all lifts of f .

If we fix a lift f̃0, then each other lift of f can be uniquely written
as αf̃0, α ∈ OX .
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In [Jia1] Boju Jiang introduced a number NFk(f ) which is a
homotopy invariant and is the lower bound for #Fix (f k).

Theorem

For any self-map f : X → X of a finite polyhedron and a fixed
natural number k ∈ N

#Fix(f k) ≥
∑
r |k

(#IEOR(f r )) · r

where IEOR(f r ) denotes the set of irreducible (I) essential (E)
orbits (O) of Reidemeister (R) classes of the map f r .
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Lemma

Consider the commutative diagram

Ỹ
f̃−−−−→ Ỹ

p

y yp

Y
f−−−−→ Y

where p : Ỹ → Y is a finite regular covering of a fin. polyh. Y .
Then

ind (f̃ ) = r · ind (f ; p(Fix(f̃ )))

where r = #{α ∈ OY ; f̃ α = αf̃ } . In particular
ind (f ; p(Fix (f̃ ))) 6= 0 if and only if L(f̃ ) = ind (f̃ ) 6= 0.

OY denotes the group of covering transformations of the regular
covering p; exceptionally in this Lemma we do not need to assume
that the covering p is universal.
THIS LEMMA HOLDS ”ALWAYS” (i.e. for every Ỹ as above).



Abstract Problems Smoothness Results for the sphere maps Equivariant maps Nielsen Theory Per. pts of self-map of the orbit space Main theorems Bibliography

Lemma

Consider the commutative diagram

Ỹ
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p

y yp

Y
f−−−−→ Y
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Corollary

Let f̄ : M → M be the map induced by an equivariant map
f : Sd → Sd of degree 6= 0, ±1. Then all the Reidemeister classes
of f and of all its iterations are essential.

IT is A KEY POINT which uses the fact that M = Sd/G . In
general we need an information that

L(f ) 6= 0 =⇒ ∀g ∈ G , g 6= e, we have L(gf ) 6= 0

or in a weaker form:
for ∞- many k (of a form which is related to m = |G |)

L(f k) 6= 0 =⇒ ∀g ∈ G , g 6= e, we have L(gf k) 6= 0 .
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Lemma

If a self-map of the orbit space X̄ = X/G , of a free action of a
finite group G, is induced by an equivariant map f : X → X then
the map Rf̄ : R(f̄ k)→ R(f̄ k) is the identity. Thus each orbit of
Reidemeister classes consists of exactly one element.

Lemma

The Reidemeister relation of the map f̄ : X̄ → X̄ induced by an
equivariant map f : X → X is trivial. Thus R(f̄ ) = OX̄ = Zm.

THESE LEMMAS also ”HOLD ALWAYS”.

Corollary

If f̄ : M → M (M = Sd/Zm) is a map induced by an equivariant
map f : Sd → Sd , then we have

#Fix (f̄ k) ≥ NF G
k (f )

def
=

∑
r |k

(#IR(f̄ r )) · r
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IN CONSEQUENCE ”ALWAYS” we have

Corollary

If f̄ : X̄ → X̄ (X̄ = X/Zm) is a map induced by an equivariant
map f : X → X , then we have

#Fix (f̄ k) ≥
∑
r |k

#{R(f̄ r ) : g ∈ G : L(gf r ) 6= 0 and [gf r ] ∈ IR(f r )} .

Thus it remains to find the number of irreducible classes in R(f̄ r )
for such r (or for every r). Let us recall that the class A ∈ R(f̄ k)
is reducible iff it belongs to the image of the map
ikl : R(f̄ l)→ R(f̄ k) for an l | k, l < k .
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Equivariant Nielsen theory for a free action on arbitrary M

Theorem ([JJWM2])

Let M be a finite polyhedron with a free action of a finite group G

and f : M
G→M an equivariant map. Then ∃ an invariant

NF G
n (f ) ∈ {0} ∪ N such that

1 NF G
n (f ) is a G-homotopy invariant.

2 #Fix(gk) ≥ NF G
n (f ) for each g ∼G f .

Let G = Zpa where p is a prime and let n = pα.

Theorem ([JJWM2])

If for every k ∈ N all the Reidemeister classes of [f̄ k ], where
f̄ = f /G , are essential then

#Fix(f α) ≥ pa · pα = m · n .
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Dependence of k 7→ NG
k (f ) on m

Definition 19

We say that a natural number r eventually divides m if r divides a
power ms . In other words r eventually divides m if and only if for a
prime number p

p|r ⇒ p|m

We define k ′ as the greatest divisor of k dividing eventually m.

Theorem

Let G be a finite abelian group, #G = m. Then

NFk(f ) = NFk ′(f )

This gives the statement of the second theorem of previous slide.
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Algebraic computation of NFk(f )

Assumption

Assume that every k ∈ N all Reidemeister classes of f̄ k are
essential.

Theorem

Let G = π1X = Zp
a1
1
⊕ · · · ⊕ Zpar

r
, where p1, ..., pr denote different

primes, be a cyclic group of order m = pa1
1 · · · par

r . Then for k
eventually dividing m

NF G
k (f ) =

{
km if m|k
gcd(m, k) ·m otherwise

If k does not event. divides m then NF G
k (f ) = 0 2
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We recall that R(f̄ k) = Zp and ipα,pβ [x ] = [pα−β · x ]. This implies
that:

1 all classes in OR(f̄ 1) = R(f̄ 1) = Zp are irreducible while for
α ≥ 1

2 [0] ∈ R(f̄ pα
) is reducible and the remaining p − 1 classes in

R(f̄ pα
) are irreducible.

Proposition

Under the above assumptions (and α ≥ 1)

NF
Zp

pα (f ) = p +
∑
β

(pβ+2 − pβ+1)

where the summation runs over the set
{β ∈ Z; 0 ≤ β ≤ α− 1 , L(f pβ

) 6= 0}
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Theorem

Let X be a simply-connected finite polyhedron with a free action
of a finite g. G and f : X → X be a G -equivariant map.
Assume that the action of G on H∗(X ;Q) is trivial.
If ∃ a prime p | #G and ∃ a ∈ N such that

L(f pa
) � 0 mod (pa+1)

then f has infinitely many periodic points and

lim sup
#Fix(f n)

n
≥ p .
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