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Let M be a compact manifold
ρ be a metric on M consistent with the topology.
f : M → M a continuous self-map of M.

Definition

The topological entropy, denoted by h(f ), is defined as

lim
ε→0

limn→∞1/n log sup #Q,

the supremum over all Q being (ε, n)-separated.
Q is called (ε, n)-separated, if for every two distinct points
x , y ∈ Q,

max
j=0,...,n

ρ(f j(x), f j(y)) ≥ ε .

In fact h(f ) does not depend on the metric (cf. [Szl]).
Warning!: h(f ) is not continuous in C 0-topology,
eg. is not a homotopy invariant.
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Entropy Conjecture

Entropy Conjecture, denoted shortly as EC, says that

log sp(f ) := log sp (H∗(f )) ≤ h(f ) .

It was posed by M. Shub in seventies who asked
what suppositions on f or M imply EC.

Meantime a few results have been shown:
f is C 1: log | deg(f )| ≤ h(f ) (Misiurewicz-Przytycki),
f is C 0: log sp(H1(f )) ≤ h(f ) (Manning),
f is C∞: EC holds (Yomdin),
M = Sd then EC is not true for f ∈ C 0,
f is C 0: M = Td the torus EC holds (Misiurewicz-Przytycki)
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Remark (Anatoly Katok conjecture - 1978)

A conjecture [Ka] saying that
EC holds for every continuous map if the universal cover of M is

homeomorphic to an Euclidean space Rd .

Let π be a (discrete) group, F : π → π a homomorphism. M be a
manifold, dim M = d , which is K (π, 1) and a continuous map

f : M → M such that the induced map f# = F .

Does there exist a numeric invariant inv(F ) ∈ R which

1 estimates from below the topological entropy of f ,
i.e. inv(f#) ≤ h(f ).

2 it is the best estimate in a homotopy class,
i.e. ∃ a map f ′ ∼ f such that inv(f#) = h(f ′).
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Logarithmic growth of a homomorphism

Definition

Let γ ∈ π-finitely generated group, with the set of generators S.
γ = γa1

1 · · · γas
s γ

as+1

1 · · · γa2s
s · · · γaks

s , aj ∈ Z.

L(γ,S) := min
present.

ks∑
j=1
|aj |. For a homomorphism F : π → π

L(F ,S) := max
1≤i≤s

L(F (γi ),S), hSAL(F ) := limn→∞
1
n log L(F n,S) .

Theorem (Manning)

hSAL(F ) does not depend on S, hAL(f#) = hSAL(f#) and ≤ h(f ) for
f : M → M, f# : π1(M)→ π1(M), M any manifold.

Remark

If F : Zd → Zd is given by a matrix A then hAL(F ) = log sp(A).
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Definition

π virtually nilpotent if it contains a finite index nilp. subgr. Γ ⊂ π

We can assume that a nilp. finite ind. subgr. Γ � π i.e. is normal.

Remark (1)

Γ ⊂ G a lattice, i.e. a discrete co-compact subgroup, of a
connected, simply con. nilpotent Lie group G.

π is fininitely gen. torsion free as a π1(K (π, 1)).

Remark (2)

π is virtually nilpotent ⇐⇒ π has polynomial growth, [Gr1].

Remark (3)

If C ⊂ Aut(G ) - the maximal compact subgroup, then
π ⊂ G n C ⊂ G n Aut(G ); this embedding of π
is called an almost Bieberbach group.
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By definition π acts on G properly discontinuously.

Definition

The quotient IN = G/π is called an infra-nilmanifold.

IN is regularly finitely covered by N = G/Γ,
with the deck transformation group equal to H = π/Γ.

Thus IN is a K (π, 1) manifold.

The image of π into G n C ⊂ Aut(G ) we denote by πIN.

Remark (4)

Similarly to N→ IN = G/πIN, we have M̃/Γ→ M = M̃/π, with
the universal cover M̃ and the deck transformation group H.

Isomorphism π ≡ πIN induces a homotopy equivalence h : M → IN.



Problems Virtually nil. K(π, 1) manifolds EC for virtually nil. K(π, 1) manifolds Proof Maps of infra-nilmanifolds Algebraic linearization of F = f# Analytic linearization From general K(π, 1) to infra-nilmanifold Applications References

By definition π acts on G properly discontinuously.

Definition

The quotient IN = G/π is called an infra-nilmanifold.

IN is regularly finitely covered by N = G/Γ,
with the deck transformation group equal to H = π/Γ.

Thus IN is a K (π, 1) manifold.

The image of π into G n C ⊂ Aut(G ) we denote by πIN.

Remark (4)

Similarly to N→ IN = G/πIN, we have M̃/Γ→ M = M̃/π, with
the universal cover M̃ and the deck transformation group H.

Isomorphism π ≡ πIN induces a homotopy equivalence h : M → IN.



Problems Virtually nil. K(π, 1) manifolds EC for virtually nil. K(π, 1) manifolds Proof Maps of infra-nilmanifolds Algebraic linearization of F = f# Analytic linearization From general K(π, 1) to infra-nilmanifold Applications References

By definition π acts on G properly discontinuously.

Definition

The quotient IN = G/π is called an infra-nilmanifold.

IN is regularly finitely covered by N = G/Γ,
with the deck transformation group equal to H = π/Γ.

Thus IN is a K (π, 1) manifold.

The image of π into G n C ⊂ Aut(G ) we denote by πIN.

Remark (4)

Similarly to N→ IN = G/πIN, we have M̃/Γ→ M = M̃/π, with
the universal cover M̃ and the deck transformation group H.

Isomorphism π ≡ πIN induces a homotopy equivalence h : M → IN.



Problems Virtually nil. K(π, 1) manifolds EC for virtually nil. K(π, 1) manifolds Proof Maps of infra-nilmanifolds Algebraic linearization of F = f# Analytic linearization From general K(π, 1) to infra-nilmanifold Applications References

By definition π acts on G properly discontinuously.

Definition

The quotient IN = G/π is called an infra-nilmanifold.

IN is regularly finitely covered by N = G/Γ,
with the deck transformation group equal to H = π/Γ.

Thus IN is a K (π, 1) manifold.

The image of π into G n C ⊂ Aut(G ) we denote by πIN.

Remark (4)

Similarly to N→ IN = G/πIN, we have M̃/Γ→ M = M̃/π, with
the universal cover M̃ and the deck transformation group H.

Isomorphism π ≡ πIN induces a homotopy equivalence h : M → IN.



Problems Virtually nil. K(π, 1) manifolds EC for virtually nil. K(π, 1) manifolds Proof Maps of infra-nilmanifolds Algebraic linearization of F = f# Analytic linearization From general K(π, 1) to infra-nilmanifold Applications References

Theorem (EC for virtually nilpotent K (π, 1))

∀ f : M → M of compact manifold, K (π, 1)-space with π
virtually nilpotent ∃ A[f ] ∈Md×d(Z) such that

h(f ) ≥ log sp(∧∗Df ) = log sp(∧∗A[f ])≥ log sp(f ) .

If M infranil =⇒ = holds for every affine endom. φ : M → M, a
factor of an affine Φ, e.g. for φf .
=⇒ h(f ) ≥ h(φf ), φf minimizes entropy in homotopy class of f .

We define the matrices A[f ] , Df ∈Md×d(R) , and φf later.
Obviously sp(∧∗A[f ]) ≥ sp A[f ] and > in general.
∃ an example of 6-dim. nilmanifold N3(R)× N3(R)/Γ and a factor
of autom. φ for which sp(∧∗A[φ]) > sp(φ) (S. Smale [1]).

Remark

The logarithm of spectral r. of exterior power sp(∧∗Df ), or
sp(∧∗A[f ]), is ”a kind of volume growth” of f#, i.e an inv(f ).
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factor of an affine Φ, e.g. for φf .
=⇒ h(f ) ≥ h(φf ), φf minimizes entropy in homotopy class of f .

We define the matrices A[f ] , Df ∈Md×d(R) , and φf later.
Obviously sp(∧∗A[f ]) ≥ sp A[f ] and > in general.
∃ an example of 6-dim. nilmanifold N3(R)× N3(R)/Γ and a factor
of autom. φ for which sp(∧∗A[φ]) > sp(φ) (S. Smale [1]).

Remark

The logarithm of spectral r. of exterior power sp(∧∗Df ), or
sp(∧∗A[f ]), is ”a kind of volume growth” of f#, i.e an inv(f ).
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Theorem (Not difficult - topology = de Rham invariant forms)

N = G/Γ, a nilman., con. nilp. Lie group G by a lattice Γ ⊂ G ,
and φf : N→ N the factor of an endom. Φf : G → G , Φf (Γ) ⊂ Γ.

Then log sp(φf ) ≤ log sp(∧∗DΦf (e))

Theorem (A hard job - dynamics = approximations and estimates)

f : N→ N of a comp. nil. N = G/Γ and Φf : G → G endom.
assoc. with f . Then log sp(∧∗DΦf (e))) ≤ h(f ) .

Decomposition G = Gcs ⊕ Gu defined by σ(DΦf (e)) gives G cs ,
Gu ⊂ G and the corresponding foliations gG cs , gGu in G .

For f : N→ N let f̃ : G → G a lift of f s. t. f̃ ∼ Φf is a lift of
homotopy f ∼ φf .

∀ f̃ -trajec. in G we assign a Φf -trajec. in Gu.
Verify: (n, ε)-separated points for Φf in Gu are assign. to
(n, ε′)-separ. points for f̃ and after projection to N = G/Γ for f .
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Proposition (Nonlinear projection - crucial)

∃ a continuous map θ = θf : G → Gu which is onto,
moreover θ|Gu is onto Gu, and such that

θ ◦ f̃ = Φf ◦ θ
∀ ξ > 1 ∃ C ≥ 1 such that ∀ x ∈ Gu, n ∈ N, xn = f̃ n(x)

ρ(τuτ cu(xn), θ(xn)) ≤ Cξn

A construction is by shadowing εn-Φ-trajectory of yn = τuτ cu(xn)
in Gu by a Φ-trajectory zn. Then θ(x) = z .

The proof uses technical lemmas, all of them are nilpotent,
i.e. all errors are polynomial in the exp coordinates.

Nilpotent Alg. ⇐⇒ Hausdorff-Campbell formula is a polynomial.
Next we find a set S in the B(x , r) ⊂ θ(Gu) which is

(ξ2n, n)-separated for Φf , ξ > 1, and #S ≥ Cξ−2nu
u∏

j=1
|λj |n.

Then taking for x ∈ S x ′ ∈ θ−1(S) and [x ′] = x ′Γ ∈ N = G/Γ we
get a set (n, δ)-separated for f .
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Maps of infra-nilmanifolds

f : M → M induces an endom. F = Ff of πM , unique up to an
inner autom. defined by f# : π1(M, z)→ π1(M, f (z)).

We can consider F as endo of π = πIN.

Fact (K. B. Lee theorem)

∃ an affine self-map Φ = Φf = (b,B) of G , with b ∈ G ,
B ∈ End(G ), such that ∀ x ∈ G , α ∈ πIN

Φ(α(x)) = F (α)(Φ(x)) (1)

By (1) ∃ a factor φ = φf of affine Φ on IN by action of πIN s.t.
φf ∼ f .

Td = Rd/Zd torus N = G/Γ nilman. IN = G/π infranil
f ∼ [Af ] f ∼ φf f ∼ φf

Af : Rd → Rd , linear φf = Φ/Γ, Φ : G → G homo φf = Φ/π
A(Zd) ⊂ Zd Φ(Γ) ⊂ Γ Φ as above
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Algebraic linearization

Lemma (Invariant nilpotent subgroup- [K. B. Lee, J. B. Lee] )

Γ contains a subgroup Γ′ � π such that: Γ′ is nilpotent, has finite
index in π, and is invariant for F .

The series of isolators Γ′√
Γ′i = {x ∈ Γ′ : (∃` > 0) x` ∈ Γ′i}, for Γ′i

being commutators in the desc. central s. for Γ′, i.e.
Γ′i+1 = [Γ′, Γ′i ], In fact Γ′√

Γ′i = Gi ∩ Γ′ defined above.

Definition of Algebraic linearization

Md×d(Z) 3 AF := ⊕
i

Ai , where Ai = F : Γ′i−1/Γ′i → Γ′i−1/Γ′i

Proposition

We have Af = Af̃ where f̃ : M̃ → M̃ is a lift of f

to the nilmanifold M̃ = G/Γ, or from IN to N.
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Algebraic linearization
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Analytic linearization

Let Φ = Φf = (b,B) be an affine self-map of G associate to
f : M → M (in fact to the homom. F ).
Differential D(B)(e) is an endom. of the Lie algebra G of G .

Definition of Analytic linearization

Denote D(B)(e) by Df and call: the analytical lin. of f , i.e. F .

σ(Df ) = {λ1, . . . , λd} all its eigenvalues with multiplicities.

sp. rad. of the full exterior power of Df , ∧∗Df =
d
⊕
0
∧k Df

sp(∧∗Df ) =
∏

j :|λj |>1

|λj |, λj ∈ σ(Df )

,
provided ∃ |λj | > 1.

Otherwise it is equal to 1 (in ∧0Df ).

It is easy to show that σ(A[f ]) = σ(DB(e)), consequently:

σ(∧∗A[f ]) = σ(∧∗Df ) =⇒ sp(∧∗A[f ]) = sp(∧∗Df )
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From general K (π, 1) to infra-nilmanifold

Borel Conjecture: if M, M ′ are two manifolds being K (π, 1) and
K (π′, 1), then
∀ iso. F : π → π′ is induced by a homeo. h : M → M ′ .

Proposition (Farrell-Jones theorem cf. [FaJo])

BC holds for virt.-nilp., i.e. M1, M2 with π = π1(M1) ' π1(M2)
are homeomorphic if π is virtually-nilpotent.

Remark

In fact they showed it for more general class of groups. However
the dimension d = 3 was not covered by the proof until the
Thurston geometrization theorem [!].

Remark

h(f ) is an invariant of conjugacy by a homeomorphism.
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From a nilmanifold to a finitely covered

Commutative diagram

M̃
f̃−−−−→ M̃

p

y yp

M
f−−−−→ M

p a finite regular cover

Proposition (Entropy of finitely covered map)

For (M̃, p,M) compact metric spaces: h(f ) = h(f̃ ) .

Proposition (Cohomology spectrum of finitely covered CW-comp.)

σ(H∗(f )) ⊂ σ(H∗(f̃ )) =⇒ sp(H∗(f )) ≤ sp(H∗(f̃ ))

Proposition (Linearization matrix of finitely covered map)

If (M̃, p,M) is a finite cover of a compact infra-nil M by a nilman.
A[f ] = A[f̃ ]
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Mahler measure and Lehmer conjecture

For an integer polynomial w(x) = a0xd + a1xd−1 + + · · · + ad ,

Definition of the Mahler measure

M(w) := |a0|
∏
λi

max(1, |λi |) ≥ C ,

where the product is taken over all roots of w(x).

The Lehmer’s conjecture in number theory:
there ∃ a universal constant C > 1, called Lehmer constant,
such that ∀ w(x) not being a product of cyclotomic polynomials
(all zeros being roots of 1) or xk , we have

M(w) ≥ C
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Estimate od Mahler measure

∃ estimates of the Mahler measure which depend on the degree
of an irreducible polynomial (the degree of an algebraic
number). An estimate given by Voutier in 1996 (cf. [Vo]),

M(w) > τ(d) := 1 +
1

4

( log log d

log d

)3
,

best known for every d > 1, not only asymptotically, we get:

Theorem

Let f : M → M be a continuous map of a compact infra-nilman.,
or virtually nilpotent K (π, 1), of dim. d. Then

a) either h(φf ) = 0,

b) or h(f ) > log τ(d).
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Smyth’s theorem [Smy] (a partial answer to the Lehmer
conjecture):

A polynomial of w is non-reciprocal ⇐⇒ the set of zeros is not
invariant under the symmetry λ 7→ λ−1,

Theorem

Let f : M → M be a continuous map of a compact
infra-nilmanifold of dimension d. If the characteristic polynomial of
Af is non-reciprocal and if h(φf ) > 0, then

h(f ) ≥ log
( ∏
λj∈roots wj (x)

max(1, |λj
i |)
)
≥ log τ0 ,

where τ0 is the real root of polynomial τ3 − τ − 1. 2

The latter τ0 is greater than 1.32471795.
In particular, τ0 does not depend neither on w(x) nor on its deg d .
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Homotopic to Anosov diffeomorphism

Remark (Homotopy property)

Note that h(f ) ≥ h(φf ), f ∼ φf , Af = A[f ]

=⇒ Theorem 2 is a statement about a homotopy property of f .
A special case: Af is a hyperbolic invertible matrix over Z
dim. of the unstable subspace 6= dim. of the stable subspace,
e.g. if φf is an Anosov affine autom., and d dim. of M, is odd.

h(f ) ≥ log 1.32471795.

Corollary (Entropy of a map homotopic to an Anosov
diffeomorphism)

h(g) ≥ log 1.32471795.

for any map g homotopic to an Anosov diffeomorphism of an
infranil manifold M of dim M odd.
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Homotopic to exapnsive

Definition of forward expansive

f is f.e. if ∃δ > 0 such that ∀x 6= y
∃n ≥ 0 with ρ(f n(x), f n(y)) ≥ δ

This implies expanding in an appropriate metric, see [PrUr]).

Remark (Expansive maps)

Finally, if f itself is metric expanding on a compact orientable
manifold or at least forward expansive,
then for its degree d(f ) one has h(f ) ≥ log |d(f )| ≥ log 2.
Note that f expanding can happen only on infra-nilmanifolds,
Franks, Shub, Gromov, Dekimpe

Corollary (Entropy of a map homotopic to an expansive map)

h(g) ≥ log 2

for any map g homotopic to a (forward) expansive map.
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