Estimates of the topological entropy from below for <u>continuous</u> self-maps on some compact manifolds

Wacław Marzantowicz & Feliks Przytycki

UAM & IM PAN

Israel, Journal of Math., Volume 165, No.1, June (2008), 349-379

Discrete and Continuous Dynamical Sys. - S. A, 21, 501-512, (2008)

May 23, 2011

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- **2** Virtually nil. $K(\pi, 1)$ manifolds
- **3** EC for virtually nil. $K(\pi, 1)$ manifolds
- 4 Proof
- 6 Maps of infra-nilmanifolds
- 6 Algebraic linearization of $F = f_{\#}$
- Analytic linearization
- 8 From general $K(\pi, 1)$ to infra-nilmanifold
- 9 Applications
 - Mahler measure
 - Homotopic to Anosov

10 References

 ρ be a metric on ${\it M}$ consistent with the topology.

 $f: M \to M$ a continuous self-map of M.

Definition

The topological entropy, denoted by h(f), is defined as

 $\lim_{\epsilon\to 0}\overline{\lim}_{n\to\infty}1/n\log\sup\#Q,$

the supremum over all Q being (ϵ, n) -separated. Q is called (ϵ, n) -separated, if for every two distinct points $x, y \in Q$,

 $\max_{i=0,\ldots,n}\rho(f^j(x),f^j(y))\geq\epsilon\,.$

In fact **h**(f) does not depend on the metric (cf. [Szl]). Warning!: **h**(f) is not continuous in C⁰-topology, eg. is not a homotopy invariant.

 ρ be a metric on M consistent with the topology.

 $f: M \to M$ a continuous self-map of M.

Definition

The topological entropy, denoted by h(f), is defined as

 $\lim_{\epsilon \to 0} \overline{\lim}_{n \to \infty} 1/n \log \sup \# Q,$

the supremum over all Q being (ϵ, n) -separated. Q is called (ϵ, n) -separated, if for every two distinct points $x, y \in Q$,

 $\max_{j=0,\ldots,n}\rho(f^j(x),f^j(y))\geq\epsilon\,.$

In fact **h**(f) does not depend on the metric (cf. [Szl]). Warning!: **h**(f) is not continuous in C⁰-topology, eg. is not a homotopy invariant.

 ρ be a metric on M consistent with the topology.

 $f: M \to M$ a continuous self-map of M.

Definition

The topological entropy, denoted by h(f), is defined as

 $\lim_{\epsilon \to 0} \overline{\lim}_{n \to \infty} 1/n \log \sup \# Q,$

the supremum over all Q being (ϵ, n) -separated. Q is called (ϵ, n) -separated, if for every two distinct points $x, y \in Q$,

 $\max_{j=0,\ldots,n}\rho(f^j(x),f^j(y))\geq\epsilon\,.$

In fact h(f) does not depend on the metric (cf. [Szl]). Warning!: h(f) is not continuous in C^0 -topology, eg. is not a homotopy invariant.

 ρ be a metric on M consistent with the topology.

 $f: M \to M$ a continuous self-map of M.

Definition

The topological entropy, denoted by h(f), is defined as

 $\lim_{\epsilon \to 0} \overline{\lim}_{n \to \infty} 1/n \log \sup \# Q,$

the supremum over all Q being (ϵ, n) -separated. Q is called (ϵ, n) -separated, if for every two distinct points $x, y \in Q$,

 $\max_{j=0,\ldots,n}\rho(f^j(x),f^j(y))\geq\epsilon\,.$

In fact $\mathbf{h}(f)$ does not depend on the metric (cf. [Szl]). Warning!: $\mathbf{h}(f)$ is not continuous in C^0 -topology, eg. is not a homotopy invariant.

Entropy Conjecture

Entropy Conjecture, denoted shortly as EC, says that

 $\log \operatorname{sp}(f) := \log \operatorname{sp}(H_*(f)) \le \mathbf{h}(f).$

It was posed by M. Shub in seventies who asked what suppositions on *f* or *M* imply EC.

Meantime a few results have been shown: f is C^1 : $\log |\deg(f)| \le h(f)$ (Misiurewicz-Przytycki), f is C^0 : $\log \operatorname{sp}(H_1(f)) \le h(f)$ (Manning), f is C^{∞} : **EC** holds (Yomdin), $M = S^d$ then **EC** is not true for $f \in C^0$, f is C^0 : $M = \mathbb{T}^d$ the torus **EC** holds (Misiurewicz-Przytycki)

Entropy Conjecture

Entropy Conjecture, denoted shortly as EC, says that

 $\log \operatorname{sp}(f) := \log \operatorname{sp}(H_*(f)) \le \mathbf{h}(f).$

It was posed by M. Shub in seventies who asked what suppositions on f or M imply EC.

Meantime a few results have been shown: f is C^1 : $\log |\deg(f)| \le h(f)$ (Misiurewicz-Przytycki), f is C^0 : $\log \operatorname{sp}(H_1(f)) \le h(f)$ (Manning), f is C^{∞} : **EC** holds (Yomdin), $M = S^d$ then **EC** is not true for $f \in C^0$, f is C^0 : $M = \mathbb{T}^d$ the torus **EC** holds (Misiurewicz-Przytycki)

Entropy Conjecture

Entropy Conjecture, denoted shortly as EC, says that

 $\log \operatorname{sp}(f) := \log \operatorname{sp}(H_*(f)) \le \mathbf{h}(f).$

It was posed by M. Shub in seventies who asked what suppositions on f or M imply EC.

Meantime a few results have been shown: $f \text{ is } C^1$: $\log |\deg(f)| \le \mathbf{h}(f)$ (Misiurewicz-Przytycki), $f \text{ is } C^0$: $\log \operatorname{sp}(H_1(f)) \le \mathbf{h}(f)$ (Manning), $f \text{ is } C^\infty$: **EC** holds (Yomdin), $M = S^d$ then **EC** is not true for $f \in C^0$, $f \text{ is } C^0$: $M = \mathbb{T}^d$ the torus **EC** holds (Misiurewicz-Przytycki)

A conjecture [Ka] saying that <u>EC holds for every continuous map if the universal cover</u> of M is homeomorphic to an Euclidean space \mathbb{R}^d .

Let π be a (discrete) group, $F : \pi \to \pi$ a homomorphism. M be a manifold, dim M = d, which is $K(\pi, 1)$ and a continuous map

 $f: M \to M$ such that the induced map $f_{\#} = F$.

Does there exist a numeric invariant $inv(F) \in \mathbb{R}$ which

it is the best estimate in a homotopy class,
 i.e. ∃ a map f' ~ f such that inv(f_#) = h(f').

A conjecture [Ka] saying that <u>EC holds for every continuous map if the universal cover</u> of M is homeomorphic to an Euclidean space \mathbb{R}^d .

Let π be a (discrete) group, $F : \pi \to \pi$ a homomorphism. M be a manifold, dim M = d, which is $K(\pi, 1)$ and a continuous map

 $f: M \to M$ such that the induced map $f_{\#} = F$.

Does there exist a numeric invariant $inv(F) \in \mathbb{R}$ which

• estimates from below the topological entropy of
$$f$$
,
i.e. $inv(f_{\#}) \leq h(f)$.

it is the best estimate in a homotopy class,
 i.e. ∃ a map f' ~ f such that inv(f_#) = h(f')

A conjecture [Ka] saying that <u>EC holds for every continuous map if the universal cover</u> of M is homeomorphic to an Euclidean space \mathbb{R}^d .

Let π be a (discrete) group, $F : \pi \to \pi$ a homomorphism. M be a manifold, dim M = d, which is $K(\pi, 1)$ and a continuous map

 $f: M \to M$ such that the induced map $f_{\#} = F$.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Does there exist a numeric invariant $inv(F) \in \mathbb{R}$ which

• estimates from below the topological entropy of
$$f$$
,
i.e. $inv(f_{\#}) \leq h(f)$.

it is the best estimate in a homotopy class,
 i.e. ∃ a map f' ~ f such that inv(f_#) = h(f').

A conjecture [Ka] saying that <u>EC holds for every continuous map if the universal cover</u> of M is homeomorphic to an Euclidean space \mathbb{R}^d .

Let π be a (discrete) group, $F : \pi \to \pi$ a homomorphism. M be a manifold, dim M = d, which is $K(\pi, 1)$ and a continuous map

f: M o M such that the induced map $f_{\#} = F$.

Does there exist a numeric invariant $inv(F) \in \mathbb{R}$ which

estimates from below the topological entropy of
$$f$$
,
i.e. $inv(f_{\#}) \leq h(f)$.

it is the best estimate in a homotopy class,
 i.e. ∃ a map f' ~ f such that inv(f_#) = h(f')

A conjecture [Ka] saying that <u>EC holds for every continuous map if the universal cover</u> of M is homeomorphic to an Euclidean space \mathbb{R}^d .

Let π be a (discrete) group, $F : \pi \to \pi$ a homomorphism. M be a manifold, dim M = d, which is $K(\pi, 1)$ and a continuous map

 $f: M \to M$ such that the induced map $f_{\#} = F$.

Does there exist a numeric invariant $inv(F) \in \mathbb{R}$ which

• estimates from below the topological entropy of
$$f$$
,
i.e. $inv(f_{\#}) \leq h(f)$.

② it is the best estimate in a homotopy class, i.e. ∃ a map f' ~ f such that inv(f_#) = h(f').

A conjecture [Ka] saying that <u>EC holds for every continuous map if the universal cover</u> of M is homeomorphic to an Euclidean space \mathbb{R}^d .

Let π be a (discrete) group, $F : \pi \to \pi$ a homomorphism. M be a manifold, dim M = d, which is $K(\pi, 1)$ and a continuous map

 $f: M \to M$ such that the induced map $f_{\#} = F$.

Does there exist a numeric invariant $inv(F) \in \mathbb{R}$ which

• estimates from below the topological entropy of
$$f$$
,
i.e. $inv(f_{\#}) \leq h(f)$.

it is the best estimate in a homotopy class,
 i.e. ∃ a map f' ~ f such that inv(f_#) = h(f').

Logarithmic growth of a homomorphism

Definition

Let
$$\gamma \in \pi$$
-finitely generated group, with the set of generators S .
 $\gamma = \gamma_1^{a_1} \cdots \gamma_s^{a_s} \gamma_1^{a_{s+1}} \cdots \gamma_s^{a_{2s}} \cdots \gamma_s^{a_{k_s}}$, $a_j \in \mathbb{Z}$.
 $L(\gamma, S) := \min_{\text{present.}} \sum_{j=1}^{k_s} |a_j|$. For a homomorphism $F : \pi \to \pi$
 $L(F, S) := \max_{1 \le i \le s} L(F(\gamma_i), S)$, $\mathbf{h}_{\mathcal{AL}}^S(F) := \lim_{n \to \infty} \frac{1}{n} \log L(F^n, S)$.

Theorem (Manning)

 $\mathbf{h}_{\mathcal{AL}}^{\mathcal{S}}(F)$ does not depend on \mathcal{S} , $\mathbf{h}_{\mathcal{AL}}(f_{\#}) = \mathbf{h}_{\mathcal{AL}}^{\mathcal{S}}(f_{\#})$ and $\leq \mathbf{h}(f)$ for $f: M \to M, f_{\#}: \pi_1(M) \to \pi_1(M), M$ any manifold.

Remark

If $F : \mathbb{Z}^d \to \mathbb{Z}^d$ is given by a matrix A then $\mathbf{h}_{\mathcal{AL}}(F) = \log \operatorname{sp}(A)$.

Logarithmic growth of a homomorphism

Definition

Let
$$\gamma \in \pi$$
-finitely generated group, with the set of generators S .
 $\gamma = \gamma_1^{a_1} \cdots \gamma_s^{a_s} \gamma_1^{a_{s+1}} \cdots \gamma_s^{a_{2s}} \cdots \gamma_s^{a_{k_s}}, a_j \in \mathbb{Z}$.
 $L(\gamma, S) := \min_{\text{present.}} \sum_{j=1}^{k_s} |a_j|$. For a homomorphism $F : \pi \to \pi$
 $L(F, S) := \max_{1 \le i \le s} L(F(\gamma_i), S), \quad \mathbf{h}_{A\mathcal{L}}^S(F) := \lim_{n \to \infty} \frac{1}{n} \log L(F^n, S)$.

Theorem (Manning)

 $\mathbf{h}_{\mathcal{AL}}^{\mathcal{S}}(F)$ does not depend on \mathcal{S} , $\mathbf{h}_{\mathcal{AL}}(f_{\#}) = \mathbf{h}_{\mathcal{AL}}^{\mathcal{S}}(f_{\#})$ and $\leq \mathbf{h}(f)$ for $f: M \to M$, $f_{\#}: \pi_1(M) \to \pi_1(M)$, M any manifold.

Remark

If $F : \mathbb{Z}^d \to \mathbb{Z}^d$ is given by a matrix A then $\mathbf{h}_{\mathcal{AL}}(F) = \log \operatorname{sp}(A)$.

Logarithmic growth of a homomorphism

Definition

Let
$$\gamma \in \pi$$
-finitely generated group, with the set of generators S .
 $\gamma = \gamma_1^{a_1} \cdots \gamma_s^{a_s} \gamma_1^{a_{s+1}} \cdots \gamma_s^{a_{2s}} \cdots \gamma_s^{a_{k_s}}, a_j \in \mathbb{Z}$.
 $L(\gamma, S) := \min_{\text{present.}} \sum_{j=1}^{k_s} |a_j|$. For a homomorphism $F : \pi \to \pi$
 $L(F, S) := \max_{1 \le i \le s} L(F(\gamma_i), S), \quad \mathbf{h}_{A\mathcal{L}}^S(F) := \lim_{n \to \infty} \frac{1}{n} \log L(F^n, S)$.

Theorem (Manning)

 $\mathbf{h}_{\mathcal{AL}}^{\mathcal{S}}(F)$ does not depend on \mathcal{S} , $\mathbf{h}_{\mathcal{AL}}(f_{\#}) = \mathbf{h}_{\mathcal{AL}}^{\mathcal{S}}(f_{\#})$ and $\leq \mathbf{h}(f)$ for $f: M \to M$, $f_{\#}: \pi_1(M) \to \pi_1(M)$, M any manifold.

Remark

If $F : \mathbb{Z}^d \to \mathbb{Z}^d$ is given by a matrix A then $\mathbf{h}_{\mathcal{AL}}(F) = \log \operatorname{sp}(A)$.

・ロト ・ロ・・ ・ モト ・ モト

Logarithmic growth of a homomorphism

Definition

Let
$$\gamma \in \pi$$
-finitely generated group, with the set of generators S .
 $\gamma = \gamma_1^{a_1} \cdots \gamma_s^{a_s} \gamma_1^{a_{s+1}} \cdots \gamma_s^{a_{2s}} \cdots \gamma_s^{a_{k_s}}, a_j \in \mathbb{Z}$.
 $L(\gamma, S) := \min_{\text{present.}} \sum_{j=1}^{k_s} |a_j|$. For a homomorphism $F : \pi \to \pi$
 $L(F, S) := \max_{1 \le i \le s} L(F(\gamma_i), S), \quad \mathbf{h}_{A\mathcal{L}}^S(F) := \lim_{n \to \infty} \frac{1}{n} \log L(F^n, S)$.

Theorem (Manning)

 $\mathbf{h}_{\mathcal{AL}}^{\mathcal{S}}(F)$ does not depend on \mathcal{S} , $\mathbf{h}_{\mathcal{AL}}(f_{\#}) = \mathbf{h}_{\mathcal{AL}}^{\mathcal{S}}(f_{\#})$ and $\leq \mathbf{h}(f)$ for $f: M \to M$, $f_{\#}: \pi_1(M) \to \pi_1(M)$, M any manifold.

Remark

If $F : \mathbb{Z}^d \to \mathbb{Z}^d$ is given by a matrix A then $h_{\mathcal{AL}}(F) = \log \operatorname{sp}(A)$.

 π virtually nilpotent if it contains a finite index nilp. subgr. $\Gamma \subset \pi$

We can assume that a nilp. finite ind. subgr. $\Gamma \lhd \pi$ i.e. is normal.

Remark (1

 $\Gamma \subset G$ a lattice, i.e. a discrete co-compact subgroup, of a connected, simply con. nilpotent Lie group G.

 π is fininitely gen. torsion free as a $\pi_1(K(\pi, 1))$.

Remark (2)

 π is virtually nilpotent $\iff \pi$ has polynomial growth, [Gr1].

Remark (3)

 π virtually nilpotent if it contains a finite index nilp. subgr. $\Gamma \subset \pi$

We can assume that a nilp. finite ind. subgr. $\Gamma \lhd \pi$ i.e. is normal.

Remark (1)

 $\Gamma \subset G$ a lattice, i.e. a discrete co-compact subgroup, of a connected, simply con. nilpotent Lie group G.

 π is fininitely gen. torsion free as a $\pi_1(K(\pi, 1))$.

Remark (2)

 π is virtually nilpotent $\iff \pi$ has polynomial growth, [Gr1].

Remark (3)

 π virtually nilpotent if it contains a finite index nilp. subgr. $\Gamma \subset \pi$

We can assume that a nilp. finite ind. subgr. $\Gamma \lhd \pi$ i.e. is normal.

Remark (1)

 $\Gamma \subset G$ a lattice, i.e. a discrete co-compact subgroup, of a connected, simply con. nilpotent Lie group G.

 π is fininitely gen. torsion free as a $\pi_1(K(\pi, 1))$.

Remark (2

 π is virtually nilpotent $\iff \pi$ has polynomial growth, [Gr1].

Remark (3)

 π virtually nilpotent if it contains a finite index nilp. subgr. $\Gamma \subset \pi$

We can assume that a nilp. finite ind. subgr. $\Gamma \lhd \pi$ i.e. is normal.

Remark (1)

 $\Gamma \subset G$ a lattice, i.e. a discrete co-compact subgroup, of a connected, simply con. nilpotent Lie group G.

 π is fininitely gen. torsion free as a $\pi_1(K(\pi, 1))$.

Remark (2)

 π is virtually nilpotent $\iff \pi$ has polynomial growth, [Gr1].

Remark (3)

 π virtually nilpotent if it contains a finite index nilp. subgr. $\Gamma \subset \pi$

We can assume that a nilp. finite ind. subgr. $\Gamma \lhd \pi$ i.e. is normal.

Remark (1)

 $\Gamma \subset G$ a lattice, i.e. a discrete co-compact subgroup, of a connected, simply con. nilpotent Lie group G.

 π is fininitely gen. torsion free as a $\pi_1(K(\pi, 1))$.

Remark (2)

 π is virtually nilpotent $\iff \pi$ has polynomial growth, [Gr1].

Remark (3)

 π virtually nilpotent if it contains a finite index nilp. subgr. $\Gamma \subset \pi$

We can assume that a nilp. finite ind. subgr. $\Gamma \lhd \pi$ i.e. is normal.

Remark (1)

 $\Gamma \subset G$ a lattice, i.e. a discrete co-compact subgroup, of a connected, simply con. nilpotent Lie group G.

 π is fininitely gen. torsion free as a $\pi_1(K(\pi, 1))$.

Remark (2)

 π is virtually nilpotent $\iff \pi$ has polynomial growth, [Gr1].

Remark (3)

Definition

The quotient $IN = G/\pi$ is called an *infra-nilmanifold*.

IN is regularly finitely covered by $\mathbf{N} = G/\Gamma$, with the deck transformation group equal to $H = \pi/\Gamma$.

Thus **IN** is a $K(\pi, 1)$ manifold.

The **image** of π into $G \ltimes \mathbf{C} \subset \operatorname{Aut}(G)$ we denote by π_{IN} .

Remark (4

Similarly to $\mathbf{N} \to \mathbf{IN} = G/\pi_{\mathbf{IN}}$, we have $\tilde{M}/\Gamma \to M = \tilde{M}/\pi$, with the universal cover \tilde{M} and the deck transformation group H.

Isomorphism $\pi \equiv \pi_{IN}$ induces a homotopy equivalence $h: M \to IN$.

Definition

The quotient $IN = G/\pi$ is called an *infra-nilmanifold*.

IN is regularly finitely covered by $\mathbf{N} = G/\Gamma$, with the deck transformation group equal to $H = \pi/\Gamma$.

Thus **IN** is a $K(\pi, 1)$ manifold.

The **image** of π into $G \ltimes \mathbf{C} \subset \operatorname{Aut}(G)$ we denote by π_{IN} .

Remark (4

Similarly to $\mathbf{N} \to \mathbf{IN} = G/\pi_{\mathbf{IN}}$, we have $\tilde{M}/\Gamma \to M = \tilde{M}/\pi$, with the universal cover \tilde{M} and the deck transformation group H.

Isomorphism $\pi \equiv \pi_{IN}$ induces a homotopy equivalence $h: M \to IN$.

Definition

The quotient $IN = G/\pi$ is called an *infra-nilmanifold*.

IN is regularly finitely covered by $\mathbf{N} = G/\Gamma$, with the deck transformation group equal to $H = \pi/\Gamma$.

Thus **IN** is a $K(\pi, 1)$ manifold.

The **image** of π into $G \ltimes \mathbf{C} \subset \operatorname{Aut}(G)$ we denote by π_{IN} .

Remark (4)

Similarly to $\mathbf{N} \to \mathbf{IN} = G/\pi_{\mathbf{IN}}$, we have $\tilde{M}/\Gamma \to M = \tilde{M}/\pi$, with the universal cover \tilde{M} and the deck transformation group H.

Isomorphism $\pi \equiv \pi_{IN}$ induces a homotopy equivalence $h: M \to IN$.

Definition

The quotient $IN = G/\pi$ is called an *infra-nilmanifold*.

IN is regularly finitely covered by $\mathbf{N} = G/\Gamma$, with the deck transformation group equal to $H = \pi/\Gamma$.

Thus **IN** is a $K(\pi, 1)$ manifold.

The **image** of π into $G \ltimes \mathbf{C} \subset \operatorname{Aut}(G)$ we denote by π_{IN} .

Remark (4)

Similarly to $\mathbf{N} \to \mathbf{IN} = G/\pi_{\mathbf{IN}}$, we have $\tilde{M}/\Gamma \to M = \tilde{M}/\pi$, with the universal cover \tilde{M} and the deck transformation group H.

Isomorphism $\pi \equiv \pi_{IN}$ induces a homotopy equivalence $h: M \to IN$.

 $\forall f: M \to M \text{ of compact manifold, } K(\pi, 1)\text{-space with } \pi$ virtually nilpotent $\exists A_{[f]} \in \mathcal{M}_{d \times d}(\mathbb{Z})$ such that

 $\mathbf{h}(f) \geq \log \operatorname{sp}(\wedge^* D_f) = \log \operatorname{sp}(\wedge^* A_{[f]}) \geq \log \operatorname{sp}(f)$.

If *M* infranil \implies = holds for every affine endom. $\phi : M \to M$, a factor of an affine Φ , e.g. for ϕ_f . \implies h(f) \ge h(ϕ_f), ϕ_f minimizes entropy in homotopy class of f.

We define the matrices $A_{[f]}$, $D_f \in \mathcal{M}_{d \times d}(\mathbb{R})$, and ϕ_f later. Obviously $\operatorname{sp}(\wedge^* A_{[f]}) \ge \operatorname{sp} A_{[f]}$ and > in general. \exists an example of 6-dim. nilmanifold $N_3(\mathbb{R}) \times N_3(\mathbb{R})/\Gamma$ and a factor of autom. ϕ for which $\operatorname{sp}(\wedge^* A_{[\phi]}) > \operatorname{sp}(\phi)$ (S. Smale [1]).

Remark

The logarithm of spectral r. of exterior power $sp(\wedge^*D_f)$, or $sp(\wedge^*A_{f1})$, is "a kind of volume growth" of $f_{\#}$, i.e an inv(f)

 $\forall f: M \to M \text{ of compact manifold, } K(\pi, 1)\text{-space with } \pi$ virtually nilpotent $\exists A_{[f]} \in \mathcal{M}_{d \times d}(\mathbb{Z})$ such that

 $\mathbf{h}(f) \geq \log \operatorname{sp}(\wedge^* D_f) = \log \operatorname{sp}(\wedge^* A_{[f]}) \geq \log \operatorname{sp}(f)$.

If *M* infranil \implies = holds for every affine endom. $\phi : M \to M$, a factor of an affine Φ , e.g. for ϕ_f . \implies h(f) \ge h(ϕ_f), ϕ_f minimizes entropy in homotopy class of f.

We define the matrices $A_{[f]}$, $D_f \in \mathcal{M}_{d imes d}(\mathbb{R})$, and ϕ_f later.

Obviously $\operatorname{sp}(\wedge^* A_{[f]}) \ge \operatorname{sp} A_{[f]}$ and > in general. \exists an example of 6-dim. nilmanifold $N_3(\mathbb{R}) \times N_3(\mathbb{R})/\Gamma$ and a factor of autom. ϕ for which $\operatorname{sp}(\wedge^* A_{[\phi]}) > \operatorname{sp}(\phi)$ (S. Smale [1]).

Remark

The logarithm of spectral r. of exterior power $sp(\wedge^*D_f)$, or $sp(\wedge^*A_{ff})$, is "a kind of volume growth" of $f_{\#}$, i.e an inv(f)

 $\forall f: M \to M \text{ of compact manifold, } K(\pi, 1)\text{-space with } \pi$ virtually nilpotent $\exists A_{[f]} \in \mathcal{M}_{d \times d}(\mathbb{Z})$ such that

 $\mathbf{h}(f) \geq \log \operatorname{sp}(\wedge^* D_f) = \log \operatorname{sp}(\wedge^* A_{[f]}) \geq \log \operatorname{sp}(f)$.

If *M* infranil \implies = holds for every affine endom. $\phi : M \to M$, a factor of an affine Φ , e.g. for ϕ_f . \implies h(f) \ge h(ϕ_f), ϕ_f minimizes entropy in homotopy class of f.

We define the matrices $A_{[f]}$, $D_f \in \mathcal{M}_{d \times d}(\mathbb{R})$, and ϕ_f later. Obviously $\operatorname{sp}(\wedge^* A_{[f]}) \ge \operatorname{sp} A_{[f]}$ and > in general. \exists an example of 6-dim. nilmanifold $N_3(\mathbb{R}) \times N_3(\mathbb{R})/\Gamma$ and a factor of autom. ϕ for which $\operatorname{sp}(\wedge^* A_{[\phi]}) > \operatorname{sp}(\phi)$ (S. Smale [1]).

Remark

The logarithm of spectral r. of exterior power $sp(\wedge^*D_f)$, or $sp(\wedge^*A_{[f]})$, is "a kind of volume growth" of $f_{\#}$, i.e an inv(f).

 $\forall f: M \to M \text{ of compact manifold, } K(\pi, 1)\text{-space with } \pi$ virtually nilpotent $\exists A_{[f]} \in \mathcal{M}_{d \times d}(\mathbb{Z})$ such that

 $\mathbf{h}(f) \geq \log \operatorname{sp}(\wedge^* D_f) = \log \operatorname{sp}(\wedge^* A_{[f]}) \geq \log \operatorname{sp}(f)$.

If *M* infranil \implies = holds for every affine endom. $\phi : M \to M$, a factor of an affine Φ , e.g. for ϕ_f . \implies h(f) \ge h(ϕ_f), ϕ_f minimizes entropy in homotopy class of f.

We define the matrices $A_{[f]}$, $D_f \in \mathcal{M}_{d \times d}(\mathbb{R})$, and ϕ_f later. Obviously $\operatorname{sp}(\wedge^* A_{[f]}) \ge \operatorname{sp} A_{[f]}$ and > in general. \exists an example of 6-dim. nilmanifold $N_3(\mathbb{R}) \times N_3(\mathbb{R})/\Gamma$ and a factor of autom. ϕ for which $\operatorname{sp}(\wedge^* A_{[\phi]}) > \operatorname{sp}(\phi)$ (S. Smale [1]).

Remark

The logarithm of spectral r. of exterior power $sp(\wedge^*D_f)$, or $sp(\wedge^*A_{[f]})$, is "a kind of volume growth" of $f_{\#}$, i.e an inv(f).

Theorem (Not difficult - topology = de Rham invariant forms)

$$\begin{split} \mathbf{N} &= G/\Gamma, \text{ a nilman., con. nilp. Lie group } G \text{ by a lattice } \Gamma \subset G, \\ \text{and } \phi_f : \mathbb{N} \to \mathbb{N} \text{ the factor of an endom. } \Phi_f : G \to G, \ \Phi_f(\Gamma) \subset \Gamma. \\ \text{ Then } \log \operatorname{sp}(\phi_f) \leq \log \operatorname{sp}(\wedge^* D \Phi_f(e)) \end{split}$$

Theorem (A hard job - dynamics = approximations and estimates)

 $f: \mathbf{N} \to \mathbf{N}$ of a comp. nil. $\mathbf{N} = G/\Gamma$ and $\Phi_f: G \to G$ endom. assoc. with f. Then $\log \operatorname{sp}(\wedge^* D\Phi_f(e))) \leq \mathbf{h}(f)$.

Decomposition $\mathcal{G} = \mathcal{G}^{cs} \oplus \mathcal{G}^{u}$ defined by $\sigma(D\Phi_{f}(e))$ gives \mathcal{G}^{cs} , $\mathcal{G}^{u} \subset \mathcal{G}$ and the corresponding foliations $g\mathcal{G}^{cs}$, $g\mathcal{G}^{u}$ in \mathcal{G} . For $f : \mathbb{N} \to \mathbb{N}$ let $\tilde{f} : \mathcal{G} \to \mathcal{G}$ a lift of f s. t. $\tilde{f} \sim \Phi_{f}$ is a lift of homotopy $f \sim \phi_{f}$.

 $\forall \ \hat{f}$ -trajec. in G we assign a $\Phi_{\hat{f}}$ -trajec. in G^u . Verify: (n, ε) -separated points for $\Phi_{\hat{f}}$ in G^u are assign. to (n, ε') -separ. points for \hat{f} and after projection to $\mathbf{N} = G/\Gamma$ for f.

Theorem (Not difficult - topology = de Rham invariant forms)

$$\begin{split} \mathbf{N} &= G/\Gamma, \text{ a nilman., con. nilp. Lie group } G \text{ by a lattice } \Gamma \subset G, \\ \text{and } \phi_f : \mathbb{N} \to \mathbb{N} \text{ the factor of an endom. } \Phi_f : G \to G, \ \Phi_f(\Gamma) \subset \Gamma. \\ \text{ Then } \log \operatorname{sp}(\phi_f) \leq \log \operatorname{sp}(\wedge^* D \Phi_f(e)) \end{split}$$

Theorem (A hard job - dynamics = approximations and estimates)

$$\begin{split} f: \mathbf{N} &\to \mathbf{N} \text{ of a comp. nil. } \mathbf{N} = G/\Gamma \text{ and } \Phi_f: G \to G \text{ endom.} \\ assoc. \text{ with } f. \text{ Then } \log \operatorname{sp}(\wedge^* D\Phi_f(e))) &\leq \mathbf{h}(f) \,. \end{split}$$

Decomposition $\mathcal{G} = \mathcal{G}^{cs} \oplus \mathcal{G}^{u}$ defined by $\sigma(D\Phi_{f}(e))$ gives \mathcal{G}^{cs} , $\mathcal{G}^{u} \subset \mathcal{G}$ and the corresponding foliations $g\mathcal{G}^{cs}$, $g\mathcal{G}^{u}$ in \mathcal{G} . For $f: \mathbf{N} \to \mathbf{N}$ let $\tilde{f}: \mathcal{G} \to \mathcal{G}$ a lift of f s. t. $\tilde{f} \sim \Phi_{f}$ is a lift of homotopy $f \sim \phi_{f}$.

 \forall *f*-trajec. in *G* we assign a Φ_f -trajec. in *G*^{*u*}.

Verify: (n, ε) -separated points for Φ_f in G^u are assign. to

 (n, ε') -separ. points for \tilde{f} and after projection to $N = G/\Gamma$ for f.

Theorem (Not difficult - topology = de Rham invariant forms)

$$\begin{split} \mathbf{N} &= G/\Gamma, \text{ a nilman., con. nilp. Lie group } G \text{ by a lattice } \Gamma \subset G, \\ \text{and } \phi_f : \mathbb{N} \to \mathbb{N} \text{ the factor of an endom. } \Phi_f : G \to G, \ \Phi_f(\Gamma) \subset \Gamma. \\ \text{ Then } \log \operatorname{sp}(\phi_f) \leq \log \operatorname{sp}(\wedge^* D \Phi_f(e)) \end{split}$$

Theorem (A hard job - dynamics = approximations and estimates)

 $f: \mathbf{N} \to \mathbf{N}$ of a comp. nil. $\mathbf{N} = G/\Gamma$ and $\Phi_f: G \to G$ endom. assoc. with f. Then $\log \operatorname{sp}(\wedge^* D\Phi_f(e))) \leq \mathbf{h}(f)$.

Decomposition $\mathcal{G} = \mathcal{G}^{cs} \oplus \mathcal{G}^{u}$ defined by $\sigma(D\Phi_{f}(e))$ gives \mathcal{G}^{cs} , $\mathcal{G}^{u} \subset \mathcal{G}$ and the corresponding foliations $g\mathcal{G}^{cs}$, $g\mathcal{G}^{u}$ in \mathcal{G} .

For $f : \mathbb{N} \to \mathbb{N}$ let $\tilde{f} : G \to G$ a lift of f s. t. $\tilde{f} \sim \Phi_f$ is a lift of homotopy $f \sim \phi_f$.

 $\forall \tilde{f}$ -trajec. in G we assign a Φ_f -trajec. in G^u .

Verify: (n, ε) -separated points for Φ_f in G^u are assign. to

 (n, ε') -separ. points for \tilde{f} and after projection to $N = G/\Gamma$ for f.

Theorem (Not difficult - topology = de Rham invariant forms)

$$\begin{split} \mathbf{N} &= G/\Gamma, \text{ a nilman., con. nilp. Lie group } G \text{ by a lattice } \Gamma \subset G, \\ \text{and } \phi_f : \mathbb{N} \to \mathbb{N} \text{ the factor of an endom. } \Phi_f : G \to G, \ \Phi_f(\Gamma) \subset \Gamma. \\ \text{ Then } \log \operatorname{sp}(\phi_f) \leq \log \operatorname{sp}(\wedge^* D \Phi_f(e)) \end{split}$$

Theorem (A hard job - dynamics = approximations and estimates)

$$\begin{split} f: \mathbf{N} &\to \mathbf{N} \text{ of a comp. nil. } \mathbf{N} = G/\Gamma \text{ and } \Phi_f: G \to G \text{ endom.} \\ assoc. \text{ with } f. \text{ Then } \log \operatorname{sp}(\wedge^* D\Phi_f(e))) \leq \mathbf{h}(f) \,. \end{split}$$

Decomposition $\mathcal{G} = \mathcal{G}^{cs} \oplus \mathcal{G}^{u}$ defined by $\sigma(D\Phi_{f}(e))$ gives \mathcal{G}^{cs} , $\mathcal{G}^{u} \subset \mathcal{G}$ and the corresponding foliations $\mathcal{g}\mathcal{G}^{cs}$, $\mathcal{g}\mathcal{G}^{u}$ in \mathcal{G} . For $f: \mathbf{N} \to \mathbf{N}$ let $\tilde{f}: \mathcal{G} \to \mathcal{G}$ a lift of f s. t. $\tilde{f} \sim \Phi_{f}$ is a lift of homotopy $f \sim \phi_{f}$.

 $\forall \tilde{f}$ -trajec. in G we assign a Φ_f -trajec. in G^u . Verify: (n, ε) -separated points for Φ_f in G^u are assign. to (n, ε') -separ. points for \tilde{f} and after projection to $\mathbf{N} = G/\Gamma$ for f.

Theorem (Not difficult - topology = de Rham invariant forms)

$$\begin{split} \mathbf{N} &= G/\Gamma, \text{ a nilman., con. nilp. Lie group } G \text{ by a lattice } \Gamma \subset G, \\ \text{and } \phi_f : \mathbb{N} \to \mathbb{N} \text{ the factor of an endom. } \Phi_f : G \to G, \ \Phi_f(\Gamma) \subset \Gamma. \\ \text{ Then } \log \operatorname{sp}(\phi_f) \leq \log \operatorname{sp}(\wedge^* D \Phi_f(e)) \end{split}$$

Theorem (A hard job - dynamics = approximations and estimates)

$$\begin{split} f: \mathbf{N} &\to \mathbf{N} \text{ of a comp. nil. } \mathbf{N} = G/\Gamma \text{ and } \Phi_f: G \to G \text{ endom.} \\ assoc. \text{ with } f. \text{ Then } \log \operatorname{sp}(\wedge^* D\Phi_f(e))) &\leq \mathbf{h}(f) \,. \end{split}$$

Decomposition $\mathcal{G} = \mathcal{G}^{cs} \oplus \mathcal{G}^{u}$ defined by $\sigma(D\Phi_{f}(e))$ gives G^{cs} , $G^{u} \subset G$ and the corresponding foliations gG^{cs} , gG^{u} in G. For $f : \mathbf{N} \to \mathbf{N}$ let $\tilde{f} : G \to G$ a lift of f s. t. $\tilde{f} \sim \Phi_{f}$ is a lift of homotopy $f \sim \phi_{f}$. $\forall \tilde{f}$ -trajec. in G we assign a Φ_{f} -trajec. in G^{u} . Verify: (n, ε) -separated points for Φ_{f} in G^{u} are assign. to (n, ε') -separ. points for \tilde{f} and after projection to $\mathbf{N} = G/\Gamma$ for f.

 $\exists \text{ a continuous map } \theta = \theta_f : G \to G^u \text{ which is onto},$ moreover $\theta_{|G^u}$ is onto G^u , and such that $\theta \circ \tilde{f} = \Phi_f \circ \theta$ $\forall \xi > 1 \exists C \ge 1 \text{ such that } \forall x \in G^u, n \in \mathbb{N}, x_n = \tilde{f}^n(x)$ $\rho(\tau^u \tau^{cu}(x_n), \theta(x_n)) \le C\xi^n$

A construction is by shadowing ε_n - Φ -trajectory of $y_n = \tau^u \tau^{cu}(x_n)$ in G^u by a Φ -trajectory z_n . Then $\theta(x) = z$.

The proof uses technical lemmas, all of them are **nilpotent**, i.e. all errors are polynomial in the exp coordinates.

Nilpotent Alg. \iff Hausdorff-Campbell formula is a polynomial. Next we find a set S in the $B(x, r) \subset \theta(G^u)$ which is

 (ξ^{2n}, n) -separated for Φ_f , $\xi > 1$, and $\#S \ge C\xi^{-2nu} \prod |\lambda_j|^n$.

Then taking for $x \in S$ $x' \in \theta^{-1}(S)$ and $[x'] = x' \Gamma \in \mathbb{N} = G/\Gamma$ we get a set (n, δ) -separated for f.

 $\exists \text{ a continuous map } \theta = \theta_f : G \to G^u \text{ which is onto},$ moreover $\theta_{|G^u}$ is onto G^u , and such that $\theta \circ \tilde{f} = \Phi_f \circ \theta$ $\forall \xi > 1 \exists C \ge 1 \text{ such that } \forall x \in G^u, n \in \mathbb{N}, x_n = \tilde{f}^n(x)$ $\rho(\tau^u \tau^{cu}(x_n), \theta(x_n)) \le C\xi^n$

A construction is by shadowing ε_n - Φ -trajectory of $y_n = \tau^u \tau^{cu}(x_n)$ in G^u by a Φ -trajectory z_n . Then $\theta(x) = z$.

The proof uses technical lemmas, all of them are **nilpotent**, i.e. all errors are polynomial in the exp coordinates.

Nilpotent Alg. \iff Hausdorff-Campbell formula is a polynomial. Next we find a set *S* in the $B(x, r) \subset \theta(G^u)$ which is

 (ξ^{2n}, n) -separated for Φ_f , $\xi > 1$, and $\#S \ge C\xi^{-2nu} \prod_{i=1}^{n} |\lambda_j|^n$.

Then taking for $x \in S$ $x' \in \theta^{-1}(S)$ and $[x'] = x' \Gamma \in \mathbb{N} = G/\Gamma$ we get a set (n, δ) -separated for f.

 $\exists \text{ a continuous map } \theta = \theta_f : G \to G^u \text{ which is onto},$ moreover $\theta_{|G^u}$ is onto G^u , and such that $\theta \circ \tilde{f} = \Phi_f \circ \theta$ $\forall \xi > 1 \exists C \ge 1 \text{ such that } \forall x \in G^u, n \in \mathbb{N}, x_n = \tilde{f}^n(x)$ $\rho(\tau^u \tau^{cu}(x_n), \theta(x_n)) \le C\xi^n$

A construction is by shadowing ε_n - Φ -trajectory of $y_n = \tau^u \tau^{cu}(x_n)$ in G^u by a Φ -trajectory z_n . Then $\theta(x) = z$.

The proof uses technical lemmas, all of them are **nilpotent**, i.e. all errors are polynomial in the exp coordinates.

Nilpotent Alg. \iff Hausdorff-Campbell formula is a polynomial. Next we find a set S in the $B(x, r) \subset \theta(G^u)$ which is (ξ^{2n}, n) -separated for Φ_f , $\xi > 1$, and $\#S \ge C\xi^{-2nu} \prod_{j=1}^{u} |\lambda_j|^n$. Then taking for $x \in S$ $x' \in \theta^{-1}(S)$ and $[x'] = x'\Gamma \in \mathbf{N} = G/\Gamma$ we get a set (n, δ) -separated for f.

 $\exists \text{ a continuous map } \theta = \theta_f : G \to G^u \text{ which is onto},$ moreover $\theta_{|G^u}$ is onto G^u , and such that $\theta \circ \tilde{f} = \Phi_f \circ \theta$ $\forall \xi > 1 \exists C \ge 1 \text{ such that } \forall x \in G^u, n \in \mathbb{N}, x_n = \tilde{f}^n(x)$ $\rho(\tau^u \tau^{cu}(x_n), \theta(x_n)) \le C\xi^n$

A construction is by shadowing ε_n - Φ -trajectory of $y_n = \tau^u \tau^{cu}(x_n)$ in G^u by a Φ -trajectory z_n . Then $\theta(x) = z$.

The proof uses technical lemmas, all of them are **nilpotent**, i.e. all errors are polynomial in the exp coordinates.

Nilpotent Alg. \iff Hausdorff-Campbell formula is a polynomial. Next we find a set S in the $B(x, r) \subset \theta(G^u)$ which is

 (ξ^{2n}, n) -separated for Φ_f , $\xi > 1$, and $\#S \ge C\xi^{-2nu}\prod_{j=1}^{n} |\lambda_j|^n$.

Then taking for $x \in S$ $x' \in \theta^{-1}(S)$ and $[x'] = x' \Gamma \in \mathbb{N} = G/\Gamma$ we get a set (n, δ) -separated for f.

 \exists a continuous map $\theta = \theta_f : G \to G^u$ which is **onto**, moreover $\theta_{|G^u|}$ is onto G^u , and such that $\theta \circ \tilde{f} = \Phi_f \circ \theta$ $\forall \xi > 1 \exists C \ge 1$ such that $\forall x \in G^u$, $n \in \mathbb{N}$, $x_n = \tilde{f}^n(x)$ $\rho(\tau^{u}\tau^{cu}(x_{n}),\theta(x_{n})) < C\xi^{n}$

A construction is by shadowing ε_n - Φ -trajectory of $y_n = \tau^u \tau^{cu}(x_n)$ in G^u by a Φ -trajectory z_n . Then $\theta(x) = z$.

The proof uses technical lemmas, all of them are **nilpotent**, i.e. all errors are polynomial in the exp coordinates.

Nilpotent Alg. \iff Hausdorff-Campbell formula is a polynomial. Next we find a set S in the $B(x, r) \subset \theta(G^u)$ which is (ξ^{2n}, n) -separated for Φ_f , $\xi > 1$, and $\#S \ge C\xi^{-2nu}\prod_{i=1}^{u} |\lambda_i|^n$. Then taking for $x \in S$ $x' \in \theta^{-1}(S)$ and $[x'] = x'\Gamma \in \mathbf{N} = G/\Gamma$ we get a set (n, δ) -separated for f.

Maps of infra-nilmanifolds

 $f: M \to M$ induces an endom. $F = F_f$ of π_M , unique up to an inner autom. defined by $f_{\#}: \pi_1(M, z) \to \pi_1(M, f(z))$.

We can consider *F* as **endo of** $\pi = \pi_{IN}$.

Fact (K. B. Lee theorem)

 $\exists \text{ an affine self-map } \Phi = \Phi_f = (b, B) \text{ of } G, \text{ with } b \in G, \\ B \in \text{End}(G), \text{ such that } \forall x \in G, \alpha \in \pi_{\text{IN}} \\ \Phi(\alpha(x)) = F(\alpha)(\Phi(x))$ (1)

By (1) \exists a **factor** $\phi = \phi_f$ of **affine** Φ on **IN** by action of π_{IN} s.t. $\phi_f \sim f$.

 $\mathbb{T}^{d} = \mathbb{R}^{d} / \mathbb{Z}^{d} \text{ torus } \mathbb{N} = G / \Gamma \text{ nilman.} \qquad \mathbb{IN} = G / \pi \text{ infranil}$ $f \sim [A_{f}] \qquad f \sim \phi_{f} \qquad f \sim \phi_{f}$ $A_{f} : \mathbb{R}^{d} \to \mathbb{R}^{d}, \text{ linear } \phi_{f} = \Phi / \Gamma, \ \Phi : G \to G \text{ homo } \phi_{f} = \Phi / \pi$ $A(\mathbb{Z}^{d}) \subset \mathbb{Z}^{d} \qquad \Phi(\Gamma) \subset \Gamma \qquad \Phi \text{ as above}$

Maps of infra-nilmanifolds

 $f: M \to M$ induces an endom. $F = F_f$ of π_M , unique up to an inner autom. defined by $f_{\#}: \pi_1(M, z) \to \pi_1(M, f(z))$.

We can consider *F* as **endo of** $\pi = \pi_{IN}$.

Fact (K. B. Lee theorem)

 $\exists \text{ an affine self-map } \Phi = \Phi_f = (b, B) \text{ of } G, \text{ with } b \in G, \\ B \in \text{End}(G), \text{ such that } \forall x \in G, \alpha \in \pi_{\text{IN}} \\ \Phi(\alpha(x)) = F(\alpha)(\Phi(x))$ (1)

By (1) \exists a factor $\phi = \phi_f$ of affine Φ on IN by action of π_{IN} s.t. $\phi_f \sim f$.

 $\mathbb{T}^{d} = \mathbb{R}^{d} / \mathbb{Z}^{d} \text{ torus } \mathbb{N} = G / \Gamma \text{ nilman.} \qquad \mathbb{IN} = G / \pi \text{ infranil}$ $f \sim [A_{f}] \qquad f \sim \phi_{f} \qquad f \sim \phi_{f}$ $A_{f} : \mathbb{R}^{d} \to \mathbb{R}^{d}, \text{ linear } \phi_{f} = \Phi / \Gamma, \Phi : G \to G \text{ homo } \phi_{f} = \Phi / \pi$ $A(\mathbb{Z}^{d}) \subset \mathbb{Z}^{d} \qquad \Phi(\Gamma) \subset \Gamma \qquad \Phi \text{ as above}$

Maps of infra-nilmanifolds

 $f: M \to M$ induces an endom. $F = F_f$ of π_M , unique up to an inner autom. defined by $f_{\#}: \pi_1(M, z) \to \pi_1(M, f(z))$.

We can consider *F* as **endo of** $\pi = \pi_{IN}$.

Fact (K. B. Lee theorem)

 $\exists \text{ an affine self-map } \Phi = \Phi_f = (b, B) \text{ of } G, \text{ with } b \in G, \\ B \in \text{End}(G), \text{ such that } \forall x \in G, \alpha \in \pi_{\text{IN}} \\ \Phi(\alpha(x)) = F(\alpha)(\Phi(x))$ (1)

By (1) \exists a **factor** $\phi = \phi_f$ of **affine** Φ on **IN** by action of π_{IN} s.t. $\phi_f \sim f$.

 $\mathbb{T}^{d} = \mathbb{R}^{d} / \mathbb{Z}^{d} \text{ torus } \mathbb{N} = G / \Gamma \text{ nilman.} \qquad \mathbb{IN} = G / \pi \text{ infranil}$ $f \sim [A_{f}] \qquad f \sim \phi_{f} \qquad f \sim \phi_{f}$ $A_{f} : \mathbb{R}^{d} \to \mathbb{R}^{d}, \text{ linear } \phi_{f} = \Phi / \Gamma, \Phi : G \to G \text{ homo } \phi_{f} = \Phi / \pi$ $A(\mathbb{Z}^{d}) \subset \mathbb{Z}^{d} \qquad \Phi(\Gamma) \subset \Gamma \qquad \Phi \text{ as above}$

Maps of infra-nilmanifolds

 $f: M \to M$ induces an endom. $F = F_f$ of π_M , unique up to an inner autom. defined by $f_{\#}: \pi_1(M, z) \to \pi_1(M, f(z))$.

We can consider *F* as **endo of** $\pi = \pi_{IN}$.

Fact (K. B. Lee theorem)

 $\exists \text{ an affine self-map } \Phi = \Phi_f = (b, B) \text{ of } G, \text{ with } b \in G, \\ B \in \text{End}(G), \text{ such that } \forall x \in G, \alpha \in \pi_{\text{IN}} \\ \Phi(\alpha(x)) = F(\alpha)(\Phi(x))$ (1)

By (1) \exists a factor $\phi = \phi_f$ of affine Φ on **IN** by action of π_{IN} s.t. $\phi_f \sim f$.

 $\mathbb{T}^{d} = \mathbb{R}^{d} / \mathbb{Z}^{d} \text{ torus } \mathbb{N} = G / \Gamma \text{ nilman.} \qquad \mathbb{IN} = G / \pi \text{ infranil}$ $f \sim [A_{f}] \qquad f \sim \phi_{f} \qquad f \sim \phi_{f}$ $A_{f} : \mathbb{R}^{d} \to \mathbb{R}^{d}, \text{ linear } \phi_{f} = \Phi / \Gamma, \ \Phi : G \to G \text{ homo } \phi_{f} = \Phi / \pi$ $A(\mathbb{Z}^{d}) \subset \mathbb{Z}^{d} \qquad \Phi(\Gamma) \subset \Gamma \qquad \Phi \text{ as above}$

Maps of infra-nilmanifolds

 $f: M \to M$ induces an endom. $F = F_f$ of π_M , unique up to an inner autom. defined by $f_{\#}: \pi_1(M, z) \to \pi_1(M, f(z))$.

We can consider *F* as **endo of** $\pi = \pi_{IN}$.

Fact (K. B. Lee theorem)

 $\exists \text{ an affine self-map } \Phi = \Phi_f = (b, B) \text{ of } G, \text{ with } b \in G, \\ B \in \text{End}(G), \text{ such that } \forall x \in G, \alpha \in \pi_{\text{IN}} \\ \Phi(\alpha(x)) = F(\alpha)(\Phi(x))$ (1)

By (1) \exists a factor $\phi = \phi_f$ of affine Φ on **IN** by action of π_{IN} s.t. $\phi_f \sim f$.

$$\begin{split} \mathbb{T}^{d} &= \mathbb{R}^{d} / \mathbb{Z}^{d} \text{ torus } & \mathsf{N} = G / \Gamma \text{ nilman.} & \mathsf{IN} = G / \pi \text{ infranil} \\ f &\sim [A_{f}] & f \sim \phi_{f} & f \sim \phi_{f} \\ A_{f} : \mathbb{R}^{d} \to \mathbb{R}^{d}, \text{ linear } \phi_{f} = \Phi / \Gamma, \Phi : G \to G \text{ homo } & \phi_{f} = \Phi / \pi \\ A(\mathbb{Z}^{d}) \subset \mathbb{Z}^{d} & \Phi(\Gamma) \subset \Gamma & \Phi \text{ as above} \end{split}$$

Lemma (Invariant nilpotent subgroup- [K. B. Lee, J. B. Lee])

 Γ contains a subgroup $\Gamma' \lhd \pi$ such that: Γ' is nilpotent, has finite index in π , and is invariant for F.

The series of *isolators* $\sqrt[\Gamma']{\Gamma'_i} = \{x \in \Gamma' : (\exists \ell > 0) \ x^\ell \in \Gamma'_i\}$, for Γ'_i being commutators in the desc. central s. for Γ' , i.e. $\Gamma'_{i+1} = [\Gamma', \Gamma'_i]$, In fact $\sqrt[\Gamma']{\Gamma'_i} = G_i \cap \Gamma'$ defined above.

Definition of Algebraic linearization

 $\mathcal{M}_{d \times d}(\mathbb{Z}) \ni A_F := \bigoplus_i A_i, \text{ where } A_i = F : \Gamma'_{i-1}/\Gamma'_i \to \Gamma'_{i-1}/\Gamma'_i$

Proposition

Lemma (Invariant nilpotent subgroup- [K. B. Lee, J. B. Lee])

 Γ contains a subgroup $\Gamma' \lhd \pi$ such that: Γ' is nilpotent, has finite index in π , and is invariant for F.

The series of *isolators* $\sqrt[\Gamma']{\Gamma'_i} = \{x \in \Gamma' : (\exists \ell > 0) \ x^\ell \in \Gamma'_i\}$, for Γ'_i being commutators in the desc. central s. for Γ' , i.e. $\Gamma'_{i+1} = [\Gamma', \Gamma'_i]$, In fact $\sqrt[\Gamma']{\Gamma'_i} = G_i \cap \Gamma'$ defined above.

Definition of Algebraic linearization

 $\mathcal{M}_{d \times d}(\mathbb{Z}) \ni A_F := \bigoplus_i A_i, \text{ where } A_i = F : \Gamma'_{i-1}/\Gamma'_i \to \Gamma'_{i-1}/\Gamma'_i$

Proposition

Lemma (Invariant nilpotent subgroup- [K. B. Lee, J. B. Lee])

 Γ contains a subgroup $\Gamma' \lhd \pi$ such that: Γ' is nilpotent, has finite index in π , and is invariant for F.

The series of *isolators* $\sqrt[\Gamma']{\Gamma'_i} = \{x \in \Gamma' : (\exists \ell > 0) \ x^\ell \in \Gamma'_i\}$, for Γ'_i being commutators in the desc. central s. for Γ' , i.e. $\Gamma'_{i+1} = [\Gamma', \Gamma'_i]$, In fact $\sqrt[\Gamma']{\Gamma'_i} = G_i \cap \Gamma'$ defined above.

Definition of Algebraic linearization

$$\mathcal{M}_{d \times d}(\mathbb{Z}) \ni A_F := \bigoplus_i A_i, \text{ where } A_i = F : \Gamma'_{i-1}/\Gamma'_i \to \Gamma'_{i-1}/\Gamma'_i$$

Proposition

Lemma (Invariant nilpotent subgroup- [K. B. Lee, J. B. Lee])

 Γ contains a subgroup $\Gamma' \lhd \pi$ such that: Γ' is nilpotent, has finite index in π , and is invariant for F.

The series of *isolators* $\sqrt[\Gamma']{\Gamma'_i} = \{x \in \Gamma' : (\exists \ell > 0) \ x^\ell \in \Gamma'_i\}$, for Γ'_i being commutators in the desc. central s. for Γ' , i.e. $\Gamma'_{i+1} = [\Gamma', \Gamma'_i]$, In fact $\sqrt[\Gamma']{\Gamma'_i} = G_i \cap \Gamma'$ defined above.

Definition of Algebraic linearization

$$\mathcal{M}_{d \times d}(\mathbb{Z}) \ni A_F := \bigoplus_i A_i, \text{ where } A_i = F : \Gamma'_{i-1}/\Gamma'_i \to \Gamma'_{i-1}/\Gamma'_i$$

Proposition

Let $\Phi = \Phi_f = (b, B)$ be an affine self-map of G associate to $f : M \to M$ (in fact to the homom. F). Differential D(B)(e) is an **endom. of the Lie algebra** \mathcal{G} of G.

Definition of Analytic linearization

Denote D(B)(e) by D_f and call: **the analytical lin.** of f, i.e. F.

 $\sigma(D_f) = \{\lambda_1, \ldots, \lambda_d\}$ all its eigenvalues with multiplicities.

sp. rad. of the **full exterior power** of D_f , $\wedge^* D_f = \bigoplus_{0}^{a} \wedge^k D_f$ $\operatorname{sp}(\wedge^* D_f) = \prod_{j:|\lambda_j|>1} |\lambda_j|, \ \lambda_j \in \sigma(D_f)$

> provided $\exists |\lambda_j| > 1$. it is equal to 1 (in $\wedge^0 D_f$).

It is easy to show that $\sigma(A_{[f]}) = \sigma(DB(e))$, consequently:

Let $\Phi = \Phi_f = (b, B)$ be an affine self-map of G associate to $f : M \to M$ (in fact to the homom. F). Differential D(B)(e) is an **endom. of the Lie algebra** \mathcal{G} of G.

Definition of Analytic linearization

Denote D(B)(e) by D_f and call: the analytical lin. of f, i.e. F.

 $\sigma(D_f) = \{\lambda_1, \dots, \lambda_d\} \text{ all its eigenvalues with multiplicities.}$ sp. rad. of the full exterior power of D_f , $\wedge^* D_f = \bigoplus_{0}^{d} \wedge^k D_f$ $\operatorname{sp}(\wedge^* D_f) = \prod_{j:|\lambda_j|>1} |\lambda_j|, \ \lambda_j \in \sigma(D_f)$

> **provided** $\exists |\lambda_j| > 1$ wise it is equal to 1 (in $\wedge^0 D_f$).

It is easy to show that $\sigma(A_{[f]}) = \sigma(DB(e))$, consequently:

Let $\Phi = \Phi_f = (b, B)$ be an affine self-map of G associate to $f : M \to M$ (in fact to the homom. F). Differential D(B)(e) is an **endom. of the Lie algebra** \mathcal{G} of G.

Definition of Analytic linearization

Denote D(B)(e) by D_f and call: **the analytical lin.** of f, i.e. F.

 $\sigma(D_f) = \{\lambda_1, \ldots, \lambda_d\}$ all its eigenvalues with multiplicities.

sp. rad. of the **full exterior power** of D_f , $\wedge^* D_f = \bigoplus_{0}^{a} \wedge^k D_f$ $\operatorname{sp}(\wedge^* D_f) = \prod_{j:|\lambda_j|>1} |\lambda_j|, \ \lambda_j \in \sigma(D_f)$

provided $\exists |\lambda_j| > 1$ **Otherwise** it is equal to 1 (in $\wedge^0 D_f$).

It is easy to show that $\sigma(A_{[f]}) = \sigma(DB(e))$, consequently:

Let $\Phi = \Phi_f = (b, B)$ be an affine self-map of G associate to $f : M \to M$ (in fact to the homom. F). Differential D(B)(e) is an **endom. of the Lie algebra** \mathcal{G} of G.

Definition of Analytic linearization

Denote D(B)(e) by D_f and call: **the analytical lin.** of f, i.e. F.

 $\sigma(D_f) = \{\lambda_1, \ldots, \lambda_d\}$ all its eigenvalues with multiplicities.

sp. rad. of the **full exterior power** of D_f , $\wedge^* D_f = \bigoplus_{0}^{d} \wedge^k D_f$ $\operatorname{sp}(\wedge^* D_f) = \prod_{j:|\lambda_j|>1} |\lambda_j|, \ \lambda_j \in \sigma(D_f)$

provided $\exists |\lambda_j| > 1.$

Otherwise it is equal to 1 (in $\wedge^0 D_f$).

It is easy to show that $\sigma(A_{[f]})=\sigma(DB(e))$, consequently:

Let $\Phi = \Phi_f = (b, B)$ be an affine self-map of G associate to $f : M \to M$ (in fact to the homom. F). Differential D(B)(e) is an **endom. of the Lie algebra** \mathcal{G} of G.

Definition of Analytic linearization

Denote D(B)(e) by D_f and call: **the analytical lin.** of f, i.e. F.

 $\sigma(D_f) = \{\lambda_1, \ldots, \lambda_d\}$ all its eigenvalues with multiplicities.

sp. rad. of the full exterior power of D_f , $\wedge^* D_f = \bigoplus_{0}^d \wedge^k D_f$ $\operatorname{sp}(\wedge^* D_f) = \prod_{j:|\lambda_j|>1} |\lambda_j|, \ \lambda_j \in \sigma(D_f)$

provided $\exists |\lambda_j| > 1$. **Otherwise** it is equal to 1 (in $\wedge^0 D_f$).

It is easy to show that $\sigma(A_{[f]}) = \sigma(DB(e))$, consequently:

Let $\Phi = \Phi_f = (b, B)$ be an affine self-map of G associate to $f : M \to M$ (in fact to the homom. F). Differential D(B)(e) is an **endom. of the Lie algebra** \mathcal{G} of G.

Definition of Analytic linearization

Denote D(B)(e) by D_f and call: **the analytical lin.** of f, i.e. F.

 $\sigma(D_f) = \{\lambda_1, \ldots, \lambda_d\}$ all its eigenvalues with multiplicities.

sp. rad. of the full exterior power of D_f , $\wedge^* D_f = \bigoplus_0^a \wedge^k D_f$ $\operatorname{sp}(\wedge^* D_f) = \prod_{j:|\lambda_j|>1} |\lambda_j|, \ \lambda_j \in \sigma(D_f)$

provided $\exists |\lambda_j| > 1$. **Otherwise** it is equal to 1 (in $\wedge^0 D_f$).

It is easy to show that $\sigma(A_{[f]}) = \sigma(DB(e))$, consequently:

Borel Conjecture: if M, M' are two manifolds being $K(\pi, 1)$ and $\overline{K(\pi', 1)}$, then \forall iso. $F: \pi \to \pi'$ is induced by a homeo. $h: M \to M'$.

Proposition (Farrell-Jones theorem cf. [FaJo])

BC holds for virt.-nilp., i.e. M_1 , M_2 with $\pi = \pi_1(M_1) \simeq \pi_1(M_2)$ are homeomorphic if π is virtually-nilpotent.

Remark

In fact they showed it for more general class of groups. However the dimension d = 3 was not covered by the proof until the Thurston geometrization theorem [!].

Remark

Borel Conjecture: if M, M' are two manifolds being $K(\pi, 1)$ and $\overline{K(\pi', 1)}$, then \forall iso. $F: \pi \to \pi'$ is induced by a homeo. $h: M \to M'$.

Proposition (Farrell-Jones theorem cf. [FaJo])

BC holds for virt.-nilp., i.e. M_1 , M_2 with $\pi = \pi_1(M_1) \simeq \pi_1(M_2)$ are homeomorphic if π is virtually-nilpotent.

Remark

In fact they showed it for more general class of groups. However the dimension d = 3 was not covered by the proof until the Thurston geometrization theorem [!].

Remark

Borel Conjecture: if M, M' are two manifolds being $K(\pi, 1)$ and $\overline{K(\pi', 1)}$, then \forall iso. $F: \pi \to \pi'$ is induced by a homeo. $h: M \to M'$.

Proposition (Farrell-Jones theorem cf. [FaJo])

BC holds for virt.-nilp., i.e. M_1 , M_2 with $\pi = \pi_1(M_1) \simeq \pi_1(M_2)$ are homeomorphic if π is virtually-nilpotent.

Remark

In fact they showed it for more general class of groups. However the dimension d = 3 was not covered by the proof until the Thurston geometrization theorem [!].

Remark

Borel Conjecture: if M, M' are two manifolds being $K(\pi, 1)$ and $\overline{K(\pi', 1)}$, then \forall iso. $F: \pi \to \pi'$ is induced by a homeo. $h: M \to M'$.

Proposition (Farrell-Jones theorem cf. [FaJo])

BC holds for virt.-nilp., i.e. M_1 , M_2 with $\pi = \pi_1(M_1) \simeq \pi_1(M_2)$ are homeomorphic if π is virtually-nilpotent.

Remark

In fact they showed it for more general class of groups. However the dimension d = 3 was not covered by the proof until the Thurston geometrization theorem [!].

Remark

From a nilmanifold to a finitely covered

Proposition (Entropy of finitely covered map)

For (\tilde{M}, p, M) compact metric spaces: $\mathbf{h}(f) = \mathbf{h}(\tilde{f})$.

Proposition (Cohomology spectrum of finitely covered CW-comp.)

 $\sigma(H^*(f)) \subset \sigma(H^*(f)) \implies \operatorname{sp}(H^*(f)) \leq \operatorname{sp}(H^*(f))$

Proposition (Linearization matrix of finitely covered map)

If (\tilde{M}, p, M) is a finite cover of a compact infra-nil M by a nilman. $A_{[f]} = A_{[\tilde{f}]}$

From a nilmanifold to a finitely covered

Proposition (Entropy of finitely covered map)

For (\tilde{M}, p, M) compact metric spaces: $\mathbf{h}(f) = \mathbf{h}(\tilde{f})$.

Proposition (Cohomology spectrum of finitely covered CW-comp.)

 $\sigma(H^*(f)) \subset \sigma(H^*(\tilde{f})) \implies \operatorname{sp}(H^*(f)) \leq \operatorname{sp}(H^*(\tilde{f}))$

Proposition (Linearization matrix of finitely covered map)

If (\tilde{M}, p, M) is a finite cover of a compact infra-nil M by a nilman. $A_{[f]} = A_{[\tilde{f}]}$

From a nilmanifold to a finitely covered

Proposition (Entropy of finitely covered map)

For (\tilde{M}, p, M) compact metric spaces: $\mathbf{h}(f) = \mathbf{h}(\tilde{f})$.

Proposition (Cohomology spectrum of finitely covered CW-comp.)

$$\sigma(H^*(f)) \subset \sigma(H^*(\tilde{f})) \implies \operatorname{sp}(H^*(f)) \leq \operatorname{sp}(H^*(\tilde{f}))$$

Proposition (Linearization matrix of finitely covered map)

If (\tilde{M}, p, M) is a finite cover of a compact infra-nil M by a nilman. $A_{[f]} = A_{[\tilde{f}]}$

Mahler measure and Lehmer conjecture

For an integer polynomial $w(x) = a_0 x^d + a_1 x^{d-1} + \cdots + a_d$,

Definition of the Mahler measure

$$\mathsf{M}(w):=|a_0|\prod_{\lambda_i}\max(1,|\lambda_i|)\geq C\,,$$

where the product is taken over all roots of w(x).

The **Lehmer's conjecture** in number theory: there \exists **a universal constant** C > 1, called <u>Lehmer constant</u>, such that $\forall w(x)$ not being a product of cyclotomic polynomials (all zeros being roots of 1) or x^k , we have

$M(w) \ge C$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mahler measure and Lehmer conjecture

For an integer polynomial $w(x) = a_0 x^d + a_1 x^{d-1} + \cdots + a_d$,

Definition of the Mahler measure

$$\mathsf{M}(w) := |a_0| \prod_{\lambda_i} \max(1, |\lambda_i|) \geq C \,,$$

where the product is taken over all roots of w(x).

The **Lehmer's conjecture** in number theory: there \exists **a universal constant** C > 1, called Lehmer constant, such that $\forall w(x)$ not being a product of cyclotomic polynomials (all zeros being roots of 1) or x^k , we have

 $M(w) \ge C$

Estimate od Mahler measure

 \exists estimates of the Mahler measure which depend on the **degree** of an irreducible polynomial (the **degree of an algebraic** number). An estimate given by Voutier in 1996 (cf. [Vo]),

$$\mathcal{M}(w) > \tau(d) := 1 + \frac{1}{4} \left(\frac{\log \log d}{\log d} \right)^3,$$

best known for every d > 1, not only asymptotically, we get:

Theorem

Let $f : M \to M$ be a continuous map of a compact infra-nilman., or virtually nilpotent $K(\pi, 1)$, of dim. d. Then

a) either
$$\mathbf{h}(\phi_f) = 0$$
,

b) or
$$\mathbf{h}(f) > \log \tau(d)$$
.

Estimate od Mahler measure

 \exists estimates of the Mahler measure which depend on the **degree** of an irreducible polynomial (the **degree of an algebraic** number). An estimate given by Voutier in 1996 (cf. [Vo]),

$$\mathcal{M}(w) > \tau(d) := 1 + \frac{1}{4} \left(\frac{\log \log d}{\log d} \right)^3,$$

best known for every d > 1, not only asymptotically, we get:

Theorem

Let $f: M \to M$ be a continuous map of a compact infra-nilman., or virtually nilpotent $K(\pi, 1)$, of dim. d. Then

a) either
$$\mathbf{h}(\phi_f) = 0$$
,

b) or
$$h(f) > \log \tau(d)$$
.

Smyth's theorem [Smy] (a partial answer to the Lehmer conjecture):

A polynomial of w is *non-reciprocal* \iff the set of zeros is not invariant under the symmetry $\lambda \mapsto \lambda^{-1}$,

Theorem

Let $f : M \to M$ be a continuous map of a compact infra-nilmanifold of dimension d. If the characteristic polynomial of A_f is non-reciprocal and if $\mathbf{h}(\phi_f) > 0$, then

$$\mathbf{h}(f) \ge \log \left(\prod_{\lambda_j \in \text{roots } w_j(\mathbf{x})} \max(1, |\lambda_j^j|)\right) \ge \log \tau_0 \,,$$

where τ_0 is the real root of polynomial $\tau^3 - \tau - 1$.

The latter τ_0 is greater than **1.32471795**. In particular, τ_0 does not depend neither on w(x) nor on its deg *d*. Smyth's theorem [Smy] (a partial answer to the Lehmer conjecture):

A polynomial of w is *non-reciprocal* \iff the set of zeros is not invariant under the symmetry $\lambda \mapsto \lambda^{-1}$,

Theorem

Let $f : M \to M$ be a continuous map of a compact infra-nilmanifold of dimension d. If the characteristic polynomial of A_f is non-reciprocal and if $\mathbf{h}(\phi_f) > 0$, then

$$\mathbf{h}(f) \geq \logig(\prod_{\lambda_j \in ext{roots } w_j(x)} \max(1, |\lambda_i^j|)ig) \geq \log au_0\,,$$

where τ_0 is the real root of polynomial $\tau^3 - \tau - 1$.

The latter τ_0 is greater than **1.32471795**. In particular, τ_0 does not depend neither on w(x) nor on its deg *d*. Smyth's theorem [Smy] (a partial answer to the Lehmer conjecture):

A polynomial of w is *non-reciprocal* \iff the set of zeros is not invariant under the symmetry $\lambda \mapsto \lambda^{-1}$,

Theorem

Let $f : M \to M$ be a continuous map of a compact infra-nilmanifold of dimension d. If the characteristic polynomial of A_f is non-reciprocal and if $\mathbf{h}(\phi_f) > 0$, then

$$\mathbf{h}(f) \geq \logig(\prod_{\lambda_j \in ext{roots } w_j(x)} \max(1, |\lambda_i^j|)ig) \geq \log au_0\,,$$

where τ_0 is the real root of polynomial $\tau^3 - \tau - 1$.

The latter τ_0 is greater than **1.32471795**. In particular, τ_0 does not depend neither on w(x) nor on its deg d.

Homotopic to Anosov diffeomorphism

Remark (Homotopy property)

Note that $\mathbf{h}(f) \ge \mathbf{h}(\phi_f)$, $f \sim \phi_f$, $A_f = A_{[f]}$ \implies Theorem 2 is a statement about a homotopy property of f. A special case: A_f is a hyperbolic invertible matrix over \mathbb{Z}

dim. of the unstable subspace \neq dim. of the stable subspace, e.g. if ϕ_f is an Anosov affine autom., and d dim. of M, is odd.

 $h(f) \ge \log 1.32471795.$

Corollary (Entropy of a map homotopic to an Anosov diffeomorphism)

 $h(g) \ge \log 1.32471795.$

for any map g homotopic to an Anosov diffeomorphism of an infranil manifold M of dim M odd.

Homotopic to Anosov diffeomorphism

Remark (Homotopy property)

Note that $\mathbf{h}(f) \ge \mathbf{h}(\phi_f)$, $f \sim \phi_f$, $A_f = A_{[f]}$ \implies Theorem 2 is a statement about a homotopy property of f. A special case: A_f is a hyperbolic invertible matrix over \mathbb{Z} dim. of the unstable subspace \neq dim. of the stable subspace,

e.g. if ϕ_f is an Anosov affine autom., and d dim. of M, is odd.

 $h(f) \ge \log 1.32471795.$

Corollary (Entropy of a map homotopic to an Anosov diffeomorphism)

 $h(g) \ge \log 1.32471795.$

for any map g homotopic to an Anosov diffeomorphism of an infranil manifold M of dim M odd.

Homotopic to exapnsive

Definition of forward expansive

 $\begin{array}{l} f \text{ is f.e. if } \exists \delta > 0 \text{ such that } \forall x \neq y \\ \exists n \geq 0 \text{ with } \rho(f^n(x), f^n(y)) \geq \delta \end{array}$

This implies expanding in an appropriate metric, see [PrUr]).

Remark (Expansive maps)

Finally, if f itself is metric expanding on a compact orientable manifold or at least forward expansive, then for its degree d(f) one has $\mathbf{h}(f) \ge \log |d(f)| \ge \log 2$. Note that f expanding can happen only on infra-nilmanifolds, Franks, Shub, Gromov, Dekimpe

Corollary (Entropy of a map homotopic to an expansive map)

$h(g) \ge \log 2$

for any map g homotopic to a (forward) expansive map.

Homotopic to exapnsive

Definition of forward expansive

 $f \text{ is f.e. if } \exists \delta > 0 \text{ such that } \forall x \neq y \\ \exists n \ge 0 \text{ with } \rho(f^n(x), f^n(y)) \ge \delta$

This implies expanding in an appropriate metric, see [PrUr]).

Remark (Expansive maps)

Finally, if f itself is metric expanding on a compact orientable manifold or at least forward expansive, then for its degree d(f) one has $\mathbf{h}(f) \ge \log |d(f)| \ge \log 2$. Note that f expanding can happen only on infra-nilmanifolds, Franks, Shub, Gromov, Dekimpe

Corollary (Entropy of a map homotopic to an expansive map)

$h(g) \ge \log 2$

for any map g homotopic to a (forward) expansive map.

Homotopic to exapnsive

Definition of forward expansive

 $f \text{ is f.e. if } \exists \delta > 0 \text{ such that } \forall x \neq y \\ \exists n \ge 0 \text{ with } \rho(f^n(x), f^n(y)) \ge \delta$

This implies expanding in an appropriate metric, see [PrUr]).

Remark (Expansive maps)

Finally, if f itself is metric expanding on a compact orientable manifold or at least forward expansive, then for its degree d(f) one has $\mathbf{h}(f) \ge \log |d(f)| \ge \log 2$. Note that f expanding can happen only on infra-nilmanifolds, Franks, Shub, Gromov, Dekimpe

Corollary (Entropy of a map homotopic to an expansive map)

 $h(g) \ge \log 2$

for any map g homotopic to a (forward) expansive map.

References

K. Dekimpe,

Hyperbolic automor. and Anosov diffeomor. on nilmanifolds, Trans. Amer. Math. Soc., **353** (2001), 2859–2877.

K. Dekimpe,

Almost-Bieberbach Groups: Affine and Polynomial Structures, volume **1639** of Lecture Notes in Mathematics, Spring., 1996.

K. Dekimpe,

WHAT IS... an Infra-nilmanifold Endomorphism? Notices of AMS, May 2011 http://www.ams.org/notices/201105/

K. Dekimpe,

What an infra-nilmanifold endomorphism really should be . . ., preprint.

G. Everest, T. Ward,

Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, 1999.

F. Farrell, L. Jones,

The surgery L-groups of poly-(finite or cyclic) groups, Invent. Math., **91** (1988), 559–586.

A. Fathi, M. Shub,

Some dynamics of pseudo-Anosov diffeomorphisms, Exposé 10, Travaux de Thurston sur les Surfaces, Asterique, No. **66-67**, Soc. Math. France, Paris, (1979), 181–207. 2000 (2000)

J. Franks,

Anosov diffeomorphisms,

1970 Global Analysis, Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., Amer. Math. Soc., Providence, R.I., (1968)) pp. 61–93.

```
D. Fried, M. Shub,
Entropy, linearity and chain recurence,
Inst. Hautes Études Sci. Publ., Math., 50 (1979), 203-214.
```

M. Gromov,

Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., **53** (1981), 53–73.

J. Jezierski, W. Marzantowicz,

Homotopy Methods in Topological Fixed and Periodic Points Theory,

Series: Topological Fixed Point Theory and Its Applications, Vol. **3**, Springer, 2006.

A. Katok,

Entropy conjecture, Smooth Dynamical Systems, Mir Publishing, Moscow (1977), 182–203 (in Russian).

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

K. Lee,

Maps on infra-nilmanifolds, Pacific J. Math., **168** (1995), 157–166.

J. Lee, K. Lee,

Lefschetz numbers for continuous maps, and periods for expanding maps on infra-nilmanifolds, J. Geom. Phys., **56** (2006), no. 10, 2011–2023.

A. Malcev,

On a class of homogeneous spaces, Izvestia Ak. Nauk SSSR, Ser. Math., **13** (1949), 9–32, in Russian. Amer. Math. Soc. Translations No. 39.

W. Marzantowicz, F. Przytycki,

Entropy conjecture for continuous maps of nilmanifolds, Israel, Journal of Math., Volume **165**, No.1, June (2008), 349-379.

M. Misiurewicz, F. Przytycki,

Topological entropy and degree of smooth mappings, Bull. Acad. Polon. Sci. , Sr. Sci. Math. Astronom. Phys. **25** (1977), 573–574.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

F. Przytycki, Anosov endomorphisms, Studia Math., **58** (1976), 249–285.

F. Przytycki, M. Urbański, Conformal Fractals – Ergodic Theory Methods, London Mathematical Society, Lectures Note Series **271**, Cambridge University Press, (2010).

M. Shub,

Endomorphisms of compact differentiable manifolds, American J. Math., **91** (1969), 175–199.

M. Shub, A letter (2005),

M. Shub,

All, most, some differentiable dynamical systems, Proc. ICM, Madrid, Vol. III, (2006), 99-117.

S. Smale,

Differentiable Dynamical Systems, Bulletin AMS, **73**, (1967), 747-817.

C. Smyth,

On the product of the conjugates outside the unit circle of an algebraic integer,

Bull. London Math. Soc., 3 (1971), 169–175.

W. Szlenk,

An Introduction to the Theory of Smooth Dynamical Systems, PWN–Polish Scientific Publishers, Warsaw), John Wiley & Sons, Inc., New York, 1984.

P. Voutier,

An effective lower bound for the height of algebraic numbers, Acta Arith., **74**, (1996), 81–95.