SEMINARIUM UKŁADY DYNAMICZNE

Tytuł:Coupled Expanding maps (wg wspólnego artykułu z P. Oprochą)Referent:Marcin KulczyckiData:18 I 2013

Zreferowane zostały następujące twierdzenia:

Theorem 1. Let (X, d) be a complete metric space and let $f: X \to X$. Let $m \ge 1$ and let A be an $m \times m$ transition matrix. Assume that A is irreducible, but not a cyclic permutation (i.e. there is a row of A with sum of its entries at least 2). Let f be strictly A-coupled-expanding in the family of closed and bounded sets $V_1, \ldots, V_m \subset X$ and let f be continuous on $\bigcup_{i=1}^m V_i$. Assume additionally that for every $\varepsilon > 0$ there is $\delta > 0$ such that for every set $B \subset \bigcup_{i=1}^m V_i$ with diam $(B) < \delta$ the inequality diam $(f^{-1}(B) \cap V_j) < \varepsilon$ holds for $j = 1, \ldots, m$. If there exists $\kappa \in \Sigma_A$ such that $\lim_{n\to\infty} \operatorname{diam}(V_{\kappa}^n) = 0$, then there exists a perfect and f-invariant set $\Lambda \subset \bigcup_{i=1}^m V_i$ such that:

- (1) The map $f|_{\Lambda}$ is chaotic in the sense of Auslander & Yorke.
- (2) There is $\varepsilon > 0$ and a Mycielski ε -scrambled set $M \subset \Lambda$ such that $\overline{\bigcup_{i=0}^{t} f^{i}(M)} = \Lambda$ for some integer $t \ge 1$. In particular $f|_{\Lambda}$ is ε -chaotic in the sense of Li & Yorke.
- (3) If A is primitive, then $f|_{\Lambda}$ is mixing and M is dense in Λ .
- (4) There exists a continuous map $\pi \colon \Lambda \to \Sigma_A$ with dense range such that $\pi \circ f = \sigma \circ \pi$.

Theorem 2. Let (X, d) be a complete metric space and let $f: X \to X$. Let $m \ge 1$ and let A be an $m \times m$ transition matrix. Assume that A is irreducible, but not a cyclic permutation. Let f be strictly A-coupled-expanding in the family of closed and bounded sets $V_1, \ldots, V_m \subset X$ and let f be continuous on $\bigcup_{i=1}^m V_i$. Assume that there are constants $\mu_1, \ldots, \mu_m > 0$ such that $d(f(x), f(y)) \ge \mu_i d(x, y)$ for every $x, y \in V_i, i \in \{1, \ldots, m\}$. Assume additionally that there is $k \ge 1$ and $u \in \Sigma_A$ such that u[1] = u[k+1] and $\mu_{u[1]} \cdot \ldots \cdot \mu_{u[k]} > 1$. Then:

- (1) There exists a closed and f-invariant set $\Lambda \subset \bigcup_{i=1}^{m} V_i$ such that $f|_{\Lambda}$ is chaotic in the sense of Devaney and there is a continuous map $\pi \colon \Lambda \to \Sigma_A$ with dense range such that $\sigma \circ \pi = \pi \circ f$.
- (2) There exist an irreducible transition matrix D, which is not a cyclic permutation, and a compact and f-invariant set $\Gamma \subset \Lambda$ such that $\pi|_{\Gamma}$ is a homeomorphism and $(\Gamma, f|_{\Gamma})$ is conjugate to (Σ_D, σ) (which means that dynamical properties of $f|_{\Gamma}$ are exactly the same as those of σ on Σ_D).
- (3) If A is primitive, then Γ can be chosen so that $f|_{\Gamma}$ is topologically mixing (and therefore D is primitive).