Maximal Entropy Random Walk

the most random of random walks (maximizing entropy production)

RW for minimal information about a system in agreement with the maximal uncertainty principle. strong localization property, scale-free, nonlocal

Some applications:

- maximizing informational capacity of channel under some constraints (data storage/transmission, maybe linguistics (?)),
- corrections to **diffusion models** to get agreement with quantum predictions (diffusion, conductance, molecular dynamics),
- metrics for complex networks (e.g. centrality measure, saliency regions, PageRank, SimRank, community detection)

We need n bits of information to choose one of 2^n possibilities.

For length $n \ 0/1$ sequences with pn of "1", how many bits we need to choose one?

A sequence of symbols with $(p_s)_{s=0..m-1}$ probability distribution contains asymptotically $H = \sum_s p_s \log(1/p_s)$ bits/symbol $(H \le \lg(m))$

Seen as weighted average: symbol/event of probability p contains lg(1/p) bits.

Fibonacci coding – as a bit sequence with **constraints**: no two neighboring '1's e.g. 0010101000010101001001 – each sequence should be equally probable What about statistics of a single step?

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \qquad S = \begin{pmatrix} q & 1-q \\ 1 & 0 \end{pmatrix} \qquad q = ?$$

What *q* should we choose to maximize informational capacity? Stationary probability: $\pi = (Pr(0), Pr(1))^T$

$$\pi S = \pi$$

$$\pi = \left(\frac{1}{2-q}, 1 - \frac{1}{2-q}\right)$$

$$\pi = \left(\frac{1}{2-q}, 1 - \frac{1}{2-q}\right)$$

$$H = \sum_{i} \pi_{i} \sum_{j} S_{ij} \lg(1/S_{ij}) = \pi_{0} \cdot h(q)$$

$$H = \sum_{i} \pi_{i} \sum_{j} S_{ij} \lg(1/S_{ij}) = \pi_{0} \cdot h(q)$$

$$H = \sum_{i} \pi_{i} \sum_{j} S_{ij} \lg(1/S_{ij}) = \pi_{0} \cdot h(q)$$

$$H_{max} \approx 0.694241913 \text{ bits/node}$$

for $q = \frac{(\sqrt{5}-1)}{2} \approx 0.618034$

My original MERW motivation: maximizing capacity under constraints for 2D analogue of Fibonacci coding ("hard square": no two neighboring '1's) We get $H \approx 0.58789$ bits/node

We need to find MERW for general situation:

Graph (M)	stochastic matrix (S)	stationary probability (π)			
$M_{ab} \in \{0,1\}$	$0 \le S_{ab} \le M_{ab}$, $\forall_a \sum_b S_{ab} = 1$	$\sum_{a} \pi_{a} S_{ab} = \pi_{b}$			

Average **entropy** production per step: $\sum_{a} \pi_{a} \sum_{b} S_{ab} \lg(1/S_{ab})$

What *S* should we choose? Such that each path/code is equally probable!

Can language be seen this way –

as maximizing channel capacity under some constraints (redundancy)?

Average **entropy** production per step: $\sum_{a} \pi_{a} \sum_{b} S_{ab} \lg(1/S_{ab})$

GRW and MERW are equal on regular graphs, but e.g. on defected 2D lattice:

GRW assumes we know exactly the used probabilistic algorithm, **MERW** assumes only there are no hidden local probabilistic rules,

has characteristic length is scale-free limit of GRW

MERW as scale-free limit of GRW

GRW: each outgoing edge is equally probable (k = 1)

 $S_{ab}^{GRW_k} \propto M_{ab} \sum_c (M^{k-1})_{bc}$ GRW_k – each outgoing **length** k

In the limit, the number of paths starting with $a \rightarrow b$ is proportional to coordinate (ψ_b) of the dominant eigenvector of M :

$$M\psi = \lambda\psi$$

Frobenius-Perron theorem for connected graph: real, nondegenerated $\lambda > 0$, $\forall_a \psi_a > 0$

Normalization for vertex *a*: $\sum_{b} M_{ab} \psi_{b} = (M\psi)_{a} = \lambda \psi_{a}$ $S_{ab} = \frac{M_{ab}}{\lambda} \frac{\Psi_{b}}{\Psi}$ Finally: while being in *a*, probability of jumping to *b* is: (symmetric *M*:) For which stationary probability distribution $(\pi S = \pi)$ is $\pi_a \propto \psi_a^2$ nonlocality $(\pi S)_b = \sum_a \psi_a^2 \cdot \frac{M_{ab}}{\lambda} \frac{\psi_b}{\psi_a} = \sum_a \psi_a M_{ab} \cdot \frac{\psi_b}{\lambda} = \lambda \psi_b \frac{\psi_b}{\lambda} = \psi_b^2 = \pi_b \qquad \left(S^k \right)_{ab} = \frac{(M^k)_{ab}}{\lambda^k} \frac{\psi_b}{\psi_b}$

Renormalization (being scale-free)

We can change not only time scale, but also spatial

$$\left(\left(S^{\mathrm{MERW}(M)}\right)^{l}\right)_{ij} = \sum_{\gamma_{1},\dots,\gamma_{k-1}} \frac{M_{i\gamma_{1}}}{\lambda} \frac{\psi_{\gamma_{1}}}{\psi_{i}} \cdot \frac{M_{\gamma_{1}\gamma_{2}}}{\lambda} \frac{\psi_{\gamma_{2}}}{\psi_{\gamma_{1}}} \cdot \dots \cdot \frac{M_{\gamma_{k-1}\gamma_{k}}}{\lambda} \frac{\psi_{j}}{\psi_{\gamma_{k-1}}} = \frac{(M^{l})_{ij}}{\lambda^{k}} \frac{\psi_{\gamma_{k}}}{\psi_{\gamma_{0}}} = \left(S^{\mathrm{MERW}(M^{l})}\right)_{ij}$$

Usually not true for GRW

Approximating MERW for short range knowledge (GRW_k)

Sinatra, R., Gomez-Gardenes, J., Lambiotte, R., Nicosia, V. & Latora, V. *Maximal-entropy random walks in complex networks with limited information*, Phys. Rev. E 83, 030103 (2011)

	GRW	GRW ₂	GRW ₃	MERW	
	$\frac{h(\pi^0)}{h(\pi)}$	$\frac{h(\pi^1)}{h(\pi)}$	$\frac{h(\pi^2)}{h(\pi)}$	$h_{\max} = h(\pi)$	
Regular lattice	1.000	1.000	1.000	1.79	
Random regular graph	1.000	1.000	1.000	1.79	
ER random graph	0.954	0.993	0.998	1.98	
Uncorrelated scale-free $\gamma = 1.5$	0.886	0.992	0.996	2.36	
BA model	0.825	0.976	0.996	2.52	
Assortative scale-free $\gamma = 1.5$	0.876	0.991	0.999	2.44	
Disassortative scale-free $\gamma = 1.5$	0.937	0.990	0.997	2.18	
Regular lattice (1% defects)	0.996	0.997	0.998	1.38	
Regular lattice (10% defects)	0.967	0.978	0.981	1.34	
Regular lattice (20% defects)	0.931	0.955	0.963	1.29	
Internet autonomous system [22]	0.744	0.900	0.980	4.10	
U.S. Airports [18]	0.879	0.990	0.997	3.88	
E-mail [23]	0.881	0.983	0.997	3.03	
SCN (cond-mat) [24]	0.694	0.867	0.946	3.17	
SCN (astro-ph) [24]	0.784	0.941	0.973	4.41	
PGP [25]	0.597	0.920	0.976	3.75	

 $h \rightarrow h_{max}$ but the behavior can be qualitatively different

(diffusion) A basic question for many complex systems: what stationary probability density should we expect?

For example for electrons "hopping" between atoms in a lattice

two answers (should agree in applicability intersection):

Quantum mechanics:	Diffusion:				
Define energy density for given system:	Choose transition probabilities –				
Hamiltonian (\widehat{H}) ,	- stochastic matrix/operator (\hat{S}) ,				
find its dominant	and ask for its stationary density:				
eigenvector/eigenfunction (ψ):	dominant eigenvector/eigenfunction				
$\widehat{H}\psi = \lambda\psi, \qquad \rho = \psi ^2$	$\rho \hat{S} = \rho$				
Strong localization property	Usually weak localization property				
(e.g. Anderson's)					

"Stochastic" questions available for **macroscopic** situations: (Heisenberg uncertainty influence microscopic ones)

Idealized situation: defected lattice (cyclic boundary conditions) \rightarrow

"Natural" stochastic <u>choice</u> ("drunken sailor"): Each outgoing edge is equally probable (GenericRW)

Bose-Hubbard Hamiltonian (→ Schrödinger) for single particle:

 $\widehat{H} = -t \sum_{(i,j) \in \mathcal{E}} \left(\widehat{a}_j^+ \widehat{a}_i + \widehat{a}_i^+ \widehat{a}_j \right) = -t \cdot \text{"adjacency matrix"}$

conductor

insulator

Discrepancy source: GRW only approximates maximal uncertainty principle

stochastic picture

ergodic picture

Stochastic picture – the evolution is indeed succeeding random decisions, accordingly to <u>chosen</u> by us transition probabilities – locally maximizing entropy, no localization property **Ergodic** picture – evolution is usually fully determined, but because of chaotic behavior we introduce densities by averaging over single trajectory (thermodynamical fluctuations?)

Thermodynamical picture: **system too complicated** - use maximal uncertainty principle/canonical ensemble to predict the most probable behavior only. – transition probabilities <u>calculated</u> from canonical ensemble among possible trajectories going through given point – fully optimizing entropy (free energy), – object doesn't directly use these probabilities (nonlocal - depend on the whole space), but just somehow chooses a trajectory (not imposing any local probabilistic rules!) Only we use the found probabilities to estimate the probability density of its position, – stationary density has strong localization property – to thermal equilibrium predicted by quantum mechanics – ground state density of corresponding Hamiltonian.

MERW evolution:

 $\left(S^{\mathrm{M}}\right)_{ij}^{t} = \frac{(M)_{ij}^{t}}{\lambda_{0}^{t}} \frac{\psi_{0,j}}{\psi_{0,i}} = \left(\sum_{k} \left(\frac{\lambda_{k}}{\lambda_{0}}\right)^{t} \varphi_{k,j} \psi_{k,i}\right) \frac{\psi_{0,j}}{\psi_{0,i}}$

First "stochastic shift" toward **near** (overlapping) eigenvectors (sub-diffusion), then "deexcitate" toward nearer **ground state** (super-diffusion)

GRW: assume some concrete transition probabilities **MERW**: assume there is no base to assume anything concrete about transition probabilities Add potential to emphasize some scenarios: **Boltzmann distribution** maximizes entropy while fixed sum of energies (minimizes free energy)

energy of path $(\gamma_t \gamma_{t+1} \dots \gamma_s)$ is $V_{\gamma_t \gamma_{t+1}} + \dots + V_{\gamma_{s-1} \gamma_s}$

Boltzmann distribution among paths – use matrix:
$$M_{ij} = A_{ij}e^{-\beta V_{ij}}$$

 $S_{\gamma_0\gamma_1}S_{\gamma_1\gamma_2} \dots S_{\gamma_{l-1}\gamma_l} = \frac{M_{\gamma_0\gamma_1} \dots M_{\gamma_{l-1}\gamma_l}}{\lambda^l} \frac{\psi_{\gamma_l}}{\psi_{\gamma_0}} = \frac{e^{-\beta \left(V_{\gamma_0\gamma_1} + V_{\gamma_1\gamma_2} + \dots + V_{\gamma_{l-1}\gamma_l}\right)}}{\lambda^l} \frac{\psi_{\gamma_l}}{\psi_{\gamma_0}}$
Eigenequation for 1D lattice: ϵ – time step, δ – lattice constant $\lambda_{\epsilon}\psi_i = (M_{\epsilon}\psi)_i = e^{-\beta\epsilon \frac{V_{i-1}+V_i}{2}}\psi_{i-1} + e^{-\beta\epsilon V_i}\psi_i + e^{-\beta\epsilon \frac{V_i+V_{i+1}}{2}}\psi_{i+1}$
 $\lambda_{\epsilon}\psi_i \approx \psi_{i-1} + \psi_i + \psi_{i+1} - \epsilon\beta \left(\frac{V_{i-1}+V_i}{2}\psi_{i-1} + V_i\psi_i + \frac{V_i+V_{i+1}}{2}\psi_{i+1}\right)$
 $\lambda_{\epsilon}\psi_i \approx \psi_{i-1} + \psi_i + \psi_{i+1} - 3\epsilon\beta V_i\psi_i / -3\psi_i / \frac{-1}{3\beta\epsilon}$
 $\frac{3-\lambda_{\epsilon}}{3\beta\epsilon}\psi_i \approx -\frac{1}{3\beta}\frac{\psi_{i-1}-2\psi_i+\psi_{i+1}}{\epsilon} + V_i\psi_i$
 $\epsilon \to 0$
 $\epsilon = \frac{\delta^2}{3\alpha}$, $E_{\epsilon} = \frac{3-\lambda_{\epsilon}}{3\beta\epsilon}$ \longrightarrow $E\Psi = \left(-\frac{\alpha}{\beta}\Delta + V\right)\Psi$

Going to normalized $\Psi^2(x)$ stationary probability density for the lowest possible *E* Propagator: $S^t(x,y) = \frac{\langle x | e^{-t\beta \hat{H}} | y \rangle}{e^{-t\beta E_0}} \frac{\Psi_0(y)}{\Psi_0(x)} = \frac{\sum_i e^{-t\beta E_i} \langle x | \Psi_i \rangle \langle \Psi_i | y \rangle}{e^{-t\beta E_0}} \frac{\Psi_0(y)}{\Psi_0(x)}$ **Time dependence** – e.g. potential can vary with time: $M_{ij}^t = A_{ij}e^{-\beta V_{ij}^t}$ energy of path $(\gamma_t \gamma_{t+1} \dots \gamma_s)$ is $V_{\gamma_t \gamma_{t+1}}^t + \dots + V_{\gamma_{s-1} \gamma_s}^{s-1}$ where $V_{ij}^t \equiv V_{ij}(t)$

Generalized dominant eigenvectors: density on the end of past and future ensembles

Continuity equation $\Leftrightarrow \lambda = \tilde{\lambda}$ (exact values only balance between φ and ψ)

Final evolution equation: $\lambda^t \varphi^{t+1} = (M^t)^T \varphi^t$ $M^t \psi^{t+1} = \lambda^t \psi^t$

Adiabatic approximation: If V is locally constant, φ and ψ are approximately right and left dominant eigenvectors of M ... but generally:

Boltzmann distribution among paths is time-symmetric

It is effective model: only represents our knowledge We know about the change – that later particle should be in the well, so earlier it should be nearby

Now for **1D** lattice there appears additional time derivative:

$$\lambda_{\epsilon}^{t}\psi_{x}^{t} = (M^{t}\psi^{t+1})_{x} \approx \psi_{x-1}^{t+1} + \psi_{x}^{t+1} + \psi_{x+1}^{t+1} - 3\epsilon\beta V_{x}^{t}\psi_{x}^{t} \qquad /-3\psi_{x}^{t+1} \qquad /\cdot \frac{-1}{3\epsilon\beta}$$

$$\frac{1}{\beta}\frac{\psi_{x}^{t+1}-\psi_{x}^{t}}{\epsilon} - E_{\epsilon}^{t}\psi_{x}^{t} \approx -\frac{1}{3\beta}\frac{\psi_{x-1}^{t+1}-2\psi_{x}^{t+1}+\psi_{x+1}^{t+1}}{\epsilon} + V_{x}^{t}\psi_{x}^{t} \qquad \text{for} \qquad E_{\epsilon}^{t} \coloneqq \frac{3-\lambda_{\epsilon}^{t}}{3\epsilon\beta}$$
Finally choosing $\epsilon = \frac{\delta^{2}}{3\alpha}$ in infintesimal limit we get evolution equations:

$$\frac{d}{dt}\Phi = \beta\left(E - \hat{H}\right)\Phi \qquad \frac{d}{dt}\Psi = \beta\left(\hat{H} - E\right)\Psi \qquad \text{for} \qquad \hat{H} = -\frac{\alpha}{\beta}\Delta + V$$

$$\Phi \text{ should evolve forward in time (to be stable), \Psi backward}$$
In adiabatic approximation $\Phi \approx \Psi \quad \text{for} \quad E(t) = \langle \Phi(t) | \hat{H}(t)\Psi(t) \rangle$

$$\frac{d}{dt}(\Phi\Psi) = \beta\left(\left((E - \hat{H})\Phi\right)\Psi + \Phi(\hat{H} - E)\Psi\right) = \alpha((\Delta\Phi)\Psi - \Phi(\Delta\Psi)) = \alpha\nabla \cdot ((\nabla\Phi)\Psi - \Phi(\nabla\Psi))$$
Continuity equation: $\frac{d}{dt}\rho = -\nabla \cdot J \quad \text{for} \qquad J = \alpha(\Phi\nabla\Psi - \Psi\nabla\Phi)$
Quantum $(\psi \in \mathbb{C})$: $j = \frac{\hbar}{2mi}(\bar{\psi}\nabla\psi - \psi\nabla\bar{\psi})$ substituting $\psi = \frac{e^{i\gamma}}{\sqrt{2}}(\Phi + i\Psi)$
 $j = \frac{\hbar e^{i\gamma}e^{-i\gamma}}{4mi}\left((\Phi - i\Psi)\nabla(\Phi + i\Psi) - (\Phi + i\Psi)\nabla(\Phi - i\Psi)\right) = \frac{\hbar}{2m}(\Phi\nabla\Psi - \Psi\nabla\Phi)$
Suggesting to choose $\alpha = \frac{\hbar}{2m}$
 $\beta = \frac{2m}{\hbar^{2}}\alpha = \frac{1}{\hbar}$

$$\frac{d}{dt} \langle \Phi | \hat{O} \Psi \rangle = \beta \langle \Phi | (E - \hat{H}) \hat{O} \Psi \rangle + \langle \Phi | \frac{\partial \hat{O}}{\partial t} \Psi \rangle + \beta \langle \Phi | \hat{O} (\hat{H} - E) \Psi \rangle$$
Ehrenfest equation: $\langle \hat{O} \rangle = \langle \frac{\partial \hat{O}}{\partial t} \rangle + \beta \langle [\hat{O}, \hat{H}] \rangle$
 $[\hat{x}, \hat{H}] = 2 \frac{\alpha}{\beta} \nabla \implies \frac{d \langle \hat{x} \rangle}{dt} = \langle 2\alpha \nabla \rangle = \frac{\langle \hat{p} \rangle}{m} \quad \text{for} \quad \hat{p} = 2\alpha \nabla = \hbar \nabla$
Now $[\hat{p}, \hat{H}] = [\hbar \nabla, V] = \hbar \nabla V \implies \frac{d}{dt} \langle \hat{p} \rangle = \beta \langle \hbar \nabla V \rangle = \langle \nabla V \rangle = \int \rho(x) \nabla V(x) dx$
Getting opposite than expected: $m \frac{d^2}{dt^2} \langle \hat{x} \rangle = \langle \nabla V \rangle$

In quantum mechanics ψ is complex function $\langle \psi | \psi \rangle = \text{const}$ because $\langle \psi | \rightarrow e^{i\hat{H}t/\hbar} \langle \psi |$ while $|\psi \rangle \rightarrow e^{-i\hat{H}t/\hbar} |\psi \rangle$ In MERW Φ and Ψ are real nonnegative functions $\langle \Phi | \Psi \rangle = \text{const}$ because $\langle \Phi | \rightarrow e^{-\beta t(\hat{H} - E)} \langle \Phi |$ while $|\Psi \rangle \rightarrow c^{\beta t(\hat{H} - E)} |\Psi \rangle$

This time momentum operator is not self-adjoined:

$$\hat{p} = \hbar \nabla$$
 $\hat{p}^{\dagger} = -\hbar \nabla$

 \hat{p}^2 also is not self-adjoined, so we have to use $\hat{p}^{\dagger}\hat{p}^{}$ instead

$$\widehat{H} = -\frac{\hbar^2}{2m}\Delta + V = \frac{\widehat{p}^{\dagger}\widehat{p}}{2m} + V$$

For adiabatic approximation $(\Phi = \Psi)$ we get **Heisenberg principle** analogue: $0 \le \langle (\hat{x} + \lambda \hat{p})\Psi | (\hat{x} + \lambda \hat{p})\Psi \rangle = \langle \Psi | (\hat{x} - \lambda \hat{p})(\hat{x} + \lambda \hat{p})\Psi \rangle = \langle \hat{x}^2 \rangle + \lambda^2 \langle \hat{p}^{\dagger} \hat{p} \rangle - \lambda \hbar$ Discriminant ≤ 0 :

$$\sqrt{\langle \hat{x}^2 \rangle} \sqrt{\langle \hat{p}^\dagger \hat{p} \rangle} \ge \frac{\hbar}{2}$$

Two particles – consider trajectory in the space of pair configurations

Thermodynamical **Pauli exclusion principle**: repelling particles choose separate dynamical equilibrium **states**

Various number of particles: vertex \equiv configuration For example adjacency matrix for fermions on length 4 segment graph

 $\begin{aligned} |\bar{n}\rangle &= \text{sum of all } n! \text{ permutations} \\ \hat{a}|\bar{n}\rangle &= n|\overline{n-1}\rangle & \hat{a}^{\dagger}|\overline{n-1}\rangle &= |\bar{n}\rangle & \hat{a}^{\dagger}\hat{a}|\bar{n}\rangle &= n|\bar{n}\rangle & [\hat{a},\hat{a}^{\dagger}] &= 1 \\ \text{Standard normalization: } |n\rangle &= |\bar{n}\rangle/\sqrt{n!} \\ \hat{a}|n\rangle &= \sqrt{n}|n-1\rangle & \hat{a}^{\dagger}|n-1\rangle &= \sqrt{n}|n\rangle & (\hat{a}^{\dagger})^{n}|0\rangle &= \frac{1}{\sqrt{n!}}|n\rangle \end{aligned}$

Bose-Hubbard model – repulsing bosons on lattice

$$\widehat{H}_{BH} = -t \sum_{(i,j)\in\mathcal{E}} \widehat{a}_j^{\dagger} \widehat{a}_i + \frac{U}{2} \sum_{i\in\mathcal{V}} \widehat{n}_i (\widehat{n}_i - 1) \qquad \dots + \sum_{i\in\mathcal{V}} V(i) \widehat{n}_i + \sum_{i,j\in\mathcal{V}} V_I(i,j) \widehat{n}_i \widehat{n}_j$$

Accordingly to **MERW**: diagonal terms \equiv self-loops ("paying for staying")

$$\widehat{H}_{MERW} \propto -\sum_{(i,j)\in\mathcal{E}} \widehat{a}_{j}^{\dagger} \widehat{a}_{i} e^{-\epsilon\beta V(\text{configuration before and after transition})} \approx \\ \approx -\sum_{(i,j)\in\mathcal{E}} \widehat{a}_{j}^{\dagger} \widehat{a}_{i} + \epsilon\beta d \sum_{i\in\mathcal{V}} V(\text{configuration after transition}) \widehat{a}_{i}^{\dagger} \widehat{a}_{i}$$

Three ϵ order approximations used exactly as for lattices: $e^{-\epsilon\beta V} \approx 1 - \epsilon\beta V$, that for neighboring vertices, V and coordinates of dominant eigenvector are nearly equal $(\hat{a}_i^{\dagger} \hat{a}_j \approx \hat{a}_i^{\dagger} \hat{a}_i)$.

Both Hamiltonians are practically equivalent for **single particle without potential** and **in continuous limit**, but generally they only approximate each other. Another question: why only one particle can transit at once?

Macroscopic soliton model – oil droplet maintaining shape due to surface tension

Bouncing droplet on vertically vibrated bath is coupled to the surface waves it generates. Becomes a "walker" moving at constant velocity.Y. Couder and E. Fort, Single-Particle Diffraction and Interference at a

Macroscopic Scale, Phys. Rev. Lett. 97 (2006)

A. Eddi, E. Fort, F. Moisy, and Y. Couder, Unpredictable Tunneling of a Classical Wave-Particle Association, Phys. Rev. Lett. 102 (2009)
E. Fort, A. Eddib, A. Boudaoudc, J. Moukhtarb, and Y. Couderb, Pathmemory induced quantization of classical orbits, PNAS vol. 107 (2010)

Summary of diffusion part: If instead of guessing the stochastic propagator (assuming that the walker indeed uses these probabilities), we assume the maximal uncertainty principle (only we use these probabilities), the predictions are no longer in disagreement with QM.

The main "quantum corrections to stochastic models": **localization**, e.g. in semiconductor – where else it is essential?

some further work:

- improving mathematical formalism,

- try to motivate, derive Levy parameters from deeper dynamics,

- see
$$S^{t}(x, y) = \frac{\sum_{i} e^{-t\beta E_{i}} \langle x | \Psi_{i} \rangle \langle \Psi_{i} | y \rangle}{e^{-t\beta E_{0}}} \frac{\Psi_{0}(y)}{\Psi_{0}(x)}$$
 propagator as

"stochastic shift toward quantum eigenstate" of perturbed trajectories,

- add velocity into consideration in analogy to Langevin equation,
 - add other internal degrees of freedom like direction of spin,
 - find deeper understanding of quantum mechanics,

- find more quantum corrections to standard diffusion models.

Using MERW properties (localization) for various applications

JG Yu, J Zhao, J Tian, Y Tan, Maximal Entropy Random Walk for Region-Based Visual Saliency (IEEE, 2014)

Centrality (graph theory, <u>http://en.wikipedia.org/wiki/Centrality</u>): indicators which identify the most important vertices within a graph.

Examples (for the same graph): A) Degree centrality ($e.g.C(v) \propto \deg(v) - GRW$), B) Closeness centrality ($e.g.C(v) \propto \sum_{w \neq v} 1/d(v,w)$), C) Betweenness centrality (how many shortest paths go through v) D) Eigenvector centrality (MERW-like), E) Katz centrality (e.g. PageRank), E) Abel a modelity

F) <u>Alpha centrality</u>.

Drawing 2D diagrams for graphs: positions from two high eigenvectors (of *M* or Laplacian: L = diag(deg(i)) - M)

Delvenne, J.-C. & Libert, A.-S. *Centrality measures and thermodynamic formalism for complex networks,* Phys. Rev. E 83, 046117 (2011).

(e.g. Google) PageRank (GRW) \rightarrow Entropy Rank (MERW) (α = Pr(going to a random page), $E = e^{-U_0}$ weight out of the graph edges)

- vertex 8 becomes more interesting than 6 (pointing to "good pages"),
 - cliques are swelling (localization) problem with "link farms" ...

Experiments on "289 000 – node piece of the Stanford web (<u>http://www.kamvar.org/</u>)"

Mean first-passage time (MFPT) (e.g. for community finding)

 M_{ij} – expected minimal time to reach vertex *j* starting from *i*.

Y. Lin, Z. Zhang, Mean first-passage time for maximal-entropy random walks in complex networks (Nature, 2014)

J. Ochab, Maximal-entropy random walk unifies centrality measures (Phys. Rev. E, 2012)

SimRank: measure how similar two vertices are

G. Jeh and J. Widom. Simrank: a measure of structural-context similarity (KDD 2002) $s(a,b) = \frac{C}{|N(a)||N(b)|} \sum_{x \in N(a)} \sum_{y \in N(b)} s(x,y) \qquad (1 \text{ if } a = b, 0 \text{ if } I(a) \cap I(b) = \emptyset)$ can be expressed by Expected—f Meeting Distance (EMD) of two walkers (a,b) $s'(a,b) = \sum_{t:(a,b) \dashrightarrow (x,x)} P[t] f(l(t)) \qquad \text{for } f(z) = z \qquad \text{or } f(z) = C^z$ P[t] - GRW probability of path t

Link prediction – which new interactions (links) are likely to occur? The more similar they are, the more likely they will link Li, R. H., Yu, J. X. & Liu, J. *Link prediction: the power of maximal entropy random walk* (ACM conference, 2011):

Replace GRW with MERW in P[t], getting $S(a,b) = \frac{C\psi_a\psi_b}{\lambda^2} \sum_{x \in N(a)} \sum_{y \in N(b)} \frac{S(x,y)}{\psi_x\psi_y}$

Uniform probability distribution among paths (MERW) instead of edges

SM	ER	BA	SW	USAir	C.ele	Yeast	Power	NetSci	GrQc	HepPh	HepTh
CTT	0.710	0.750	0.791	0.847	0.784	0.709	0.713	0.917	0.520	0.523	0.525
CTME	0.720	0.746	0.745	0.855	0.798	0.501	0.501	0.866	0.556	0.645	0.534
CK	0.805	0.883	0.804	0.856	0.809	0.715	0.501	0.799	0.513	0.501	0.513
MECK	0.940	0.981	0.845	0.936	0.856	0.757	0.501	0.975	0.517	0.501	0.503
NCK	0.502	0.501	0.501	0.708	0.706	0.501	0.501	0.501	0.503	0.508	0.501
NMECK	0.903	0.983	0.982	0.931	0.969	0.710	0.501	0.971	0.623	0.750	0.675
DK	0.835	0.813	0.983	0.836	0.838	0.829	0.764	0.965	0.501	0.605	0.593
MEDK	0.999	0.983	0.998	0.991	0.971	0.749	0.812	0.963	0.739	0.735	0.746
NDK	0.786	0.711	0.956	0.920	0.778	0.731	0.857	0.908	0.531	0.530	0.530
NMEDK	0.999	0.983	0.998	0.997	0.978	0.970	0.857	0.996	0.739	0.755	0.758
RK	0.851	0.907	0.973	0.898	0.887	0.803	0.864	0.624	0.632	0.608	0.561
MERK	0.999	0.983	0.998	0.981	0.949	0.812	0.812	0.963	0.618	0.745	0.735
NRK	0.504	0.501	0.501	0.719	0.501	0.703	0.806	0.501	0.501	0.508	0.504
NMERK	0.999	0.983	0.998	0.983	0.975	0.968	0.857	0.986	0.739	0.755	0.756
MENK	0.999	0.983	0.998	0.936	0.975	0.799	0.812	0.963	0.618	0.730	0.746
NNK	0.503	0.501	0.501	0.819	0.501	0.705	0.806	0.501	0.501	0.508	0.504
NMENK	0.999	0.983	0.998	0.983	0.965	0.965	0.857	0.996	0.739	0.755	0.752
PD	0.926	0.974	0.953	0.971	0.866	0.887	0.857	0.722	0.666	0.618	0.628
MEPD	0.999	0.976	0.998	0.993	0.964	0.968	0.857	0.913	0.739	0.755	0.758
PDM	0.805	0.764	0.957	0.972	0.798	0.886	0.857	0.874	0.616	0.660	0.530
MEPDM	0.999	0.983	0.998	0.990	0.976	0.970	0.857	0.996	0.739	0.755	0.758
SR	—	_	_	0.905	0.860	—	—	0.955	—	—	—
MESR	—	_	—	0.960	0.876	—	—	0.963	—	—	—
CN	0.884	0.782	0.501	0.386	0.971	0.752	0.802	0.961	0.617	0.623	0.635
AA	0.886	0.781	0.501	0.409	0.975	0.793	0.806	0.969	0.623	0.630	0.638
HPLP+	0.983	0.971	0.978	0.979	0.974	0.965	0.886	0.984	0.725	0.753	0.732
SRW	0.991	0.977	0.989	0.983	0.972	0.967	0.863	0.983	0.731	0.760	0.754

27 link prediction methods (the higher the better), "ME" – maximal entropy

MERW – the most random among random walks uniform distribution among paths, not edges (GRW)

 As the choice of statistical parameters of an informational channel MERW allows to maximize channel capacity under some constraints (language?)

- As random walk/diffusion (scale-free)

GRW: the walker indeed performs succeeding random decisions **MERW**: only represents our (lack of) knowledge about a complex dynamics

- For metrics to analyze complex network

GRW sees only degrees of vertices **MERW** allows to evaluate importance in the space of possible paths

social/evolutionary entropy (Lloyd Demetrius):

"thinking" in terms of paths (reason \rightarrow result chains) of possibilities?

$\mathbf{GRW} \rightarrow \mathbf{MERW}$

in many cases improves performance or agreement