Maximal Entropy Random Walk

the most random of random walks
(maximizing entropy production)

RW for minimal information about a system
In agreement with the maximal uncertainty principle.
strong localization property, scale-free, nonlocal

Some applications:
- maximizing informational capacity of channel under some constraints
(data storage/transmission, maybe linguistics (?)),
- corrections to diffusion models to get agreement with quantum
predictions (diffusion, conductance, molecular dynamics),
- metrics for complex networks (e.g. centrality measure, saliency
regions, PageRank, SimRank, community detection)

Jarostaw Duda, Krakow, 24.11.2014



We need n bits of information to choose one of 2™ possibilities.

For length n 0/1 sequences with pn of “1”, how many bits we need to choose one?
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A sequence of symbols with (p;)—¢ .m—1 probability distribution
contains asymptotically H = .. p. lg(1/p.) bits/symbol (H < lg(m))

Seen as weighted average:
symbol /event of probability p contains lg(1/p) bits.




Fibonacci coding — as a bit sequence with constraints: no two neighboring ‘1’'s
e.g. 0010101000010101001001 — each sequence should be equally probable
What about statistics of a single step? a 1-q
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What q should we choose to maximize informational capacity?
Stationary probability: = = (Pr(0),Pr(1))?
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H. ..~ 0.694241913 bits/node
(@2-1) ~ 0.618034

for  g=




My original MERW motivation: maximizing capacity under constraints
for 2D analogue of Fibonacci coding (“hard square™. no two neighboring ‘1°s)
We get H = 0.58789 bits/node

Some application: C ST
use magnetic dots (twice) more densely, Dahan | XA
at cost of constraints — two dots cannot overlap. @ Y |¥

2-0.58789 = 1.176
We get 17.6% capacity increase due to better positioning!
(e.g. using 1D MERW on the space of possible succeeding lines)

We need to find MERW for general situation:

Graph (M) % stochastic matrix (S) N stationary probability (m)
Map €401} =7 0<Sg < Mgy, Vo XpSap =1 2aTaSap = Tp

Average entropy production per step: Y., 74 2p Saple(1/Sqp)
What s should we choose? Such that each path/code is equally probable!

Can language be seen this way —
as maximizing channel capacity under some constraints (redundancy)?




Graph (M) % stochastic matrix (S) N stationary probability (m)
Map €{01} "7 0<S4 <Mgy , Yo 2pSap =1 2aTaqSap = Tp

Average entropy production per step: X, 74 2p Saple(1/Sqp)

GRW and MERW are equal on regular graphs, but e.g. on defected 2D lattice:
10 steps ,, 100 steps 1000 steps

Generic Random Walk (GRW):
assume uniform distribution among
“the nearest neighbors”

d/3

Maximal Entropy Random Walk
(MERW): choose that
for each two vertices,
each path of given length
between them is equally probable

1

Pr(y,)=Pr(y,)

7

GRW assumes we know exactly the used probabilistic algorithm, has characteristic length
MERW assumes only there are no hidden local probabilistic rules, is scale-free limit of GRW



MERW as scale-free limit of GRW ngw" < Mgy Y (MF1), .
GRW: each outgoing edge is equally probable(k = 1)

GRW  GRW,  GRW, GRw, ——> MERW GRW, — each outgoing length k

0.5 0.333 0.4 0.375 P(4) 0.382 path is equally probable.

0 0 In the limit, the number

1 1 - 3 i of paths starting with a — b

' T ! 1 W is proportional to

1 2 3 5 W3 coordinate (y,) of the
dominant eigenvector of M

I I My = 1Y

Frobenius-Perron theorem for connected graph: real, nondegenerated A >0, V, ¥, > 0

Normalization for vertex a: ., M, = (MyY), = AP,

. : : : - : : : Mab \Vb
Finally: while being in a, probability of jumping to b is: Sab =
(symmetric M:) AW,
For which stationary probability distribution (7§ = ) is @, o€ Pz nonloca/lity
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Renormalization (being scale-free)

We can change not only time scale, but also spatial

((SMERW(M))Z) _ z Miy, ¥y, My, Py, o My i (MY Wy, _ (SMERW(Ml))
ij ij

Y1rVk—-1 A lpi A lp}’l A lp)’k—1 AK lp)’o

Usually not true for GRW
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Approximating MERW for short range knowledge (GRW,)
Sinatra, R., Gomez-Gardenes, ., Lambiotte, R., Nicosia, V. & Latora, V. Maximal-entropy random
walks in complex networks with limited information, Phys. Rev. E 83, 030103 (2011)

GRW GRW, GRW, MERW
0 1 2

e b L B = h(7T)
Regular lattice 1.000 1.000 1.000 1.79
Random regular graph 1.000 1.000 1.000 1.79
ER random graph 0.954 0.993 0.998 1.98
Uncorrelated scale-free y = 1.5 0.886 0.992 0.996 2.36
BA model 0.825 0.976 0.996 2.52
Assortative scale-free y = 1.5 0.876 0.991 0.999 2.44
Disassortative scale-free y = 1.5 0.937 0.990 0.997 2.18
Regular lattice (1% defects) 0.996 0.997 0.998 1.38
Regular lattice (10% defects) 0.967 0.978 0.981 1.34
Regular lattice (20% defects) 0.931 0.955 0.963 1.29
Internet autonomous system [22] 0.744 0.900 0.980 4.10
U.S. Airports [18] 0.879 0.990 0.997 3.88
E-mail [23] 0.881 0.983 0.997 3.03
SCN (cond-mat) [24] 0.694 0.867 0.946 3.17
SCN (astro-ph) [24] 0.784 0.941 0.973 4.41
PGP [25] 0.597 0.920 0.976 3.75

h - h,,,, but the behavior can be qualitatively different



GRW: stationary probability < d; = . ; M;;
MERW: stationary probability | oc ¥? | where My = Ay for largest A

Defected (/h/))x — (Mlp)x =Py_1 + (1- Vx)lljx + Yys1 /=3y [/ —1
1D lattice Ey, = —(W,—q — 2, + Wypq) + Vb, forsmallest E=3—-41

Nonlocal — depends on the whole graph!
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(diffusion) A basic guestion for many complex systems:

what stationary probability density should we expect?
For example for electrons “hopping” between atoms in a lattice

two answers (should agree in applicability intersection):

Quantum mechanics: Diffusion:
Define energy density for given system: Choose transition probabilities —
Hamiltonian (H), - stochastic matrix/operator (S),
find its dominant and ask for its stationary density:
eigenvector/eigenfunction (y): dominant eigenvector/eigenfunction
Hy = Ay, p = Y| pS=p
L Usually weak localization property
Strong localization property
(e.g. Anderson’s)

“Stochastic” questions available ~ Insert | | | | | Whatis the
for macroscopic situations: single | ®8_ | | probability
(Heisenberg uncertainty electron | \\\7 | of finding it
Influence microscopic ones) here EEE mmm pmE f"\here s fresss 1 115 7




|dealized situation: defected lattice (cyclic boundary conditions) -

“Natural” stochastic choice (“drunken sailor”):
Each outgoing edge is equally probable (GenericRW)

Bose-Hubbard Hamiltonian (— Schrodinger) for single particle:

H = -t Y jes(@fa; + afa;) = —t - "adjacency matrix”

STM measurenments of electron density for Ga; ,Mn,As (20pA) A 0 70mm
ground state density ~. /_ A ;'é"‘
GRW of Bose-Hubbard / MERW j‘ Y%
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Discrepancy source: GRW only approximates maximal uncertainty principle



stochastic picture  thermodynamical picture ergodic picture

current transition
position probabilities
\ -~
,,,//;% h
¥ /I

ensemble of all
(physical) trajectories
Stochastic picture — the evolution is indeed succeeding random decisions, accordingly to
chosen by us transition probabilities — locally maximizing entropy, no localization property
Ergodic picture — evolution is usually fully determined, but because of chaotic behavior
we introduce densities by averaging over single trajectory (thermodynamical fluctuations?)

Thermodynamical picture: system too complicated - use maximal uncertainty

principle/canonical ensemble to predict the most probable behavior only.

— transition probabilities calculated from canonical ensemble among possible
trajectories going through given point — fully optimizing entropy (free energy),

— object doesn’t directly use these probabilities (nonlocal - depend on the whole space),
but just somehow chooses a trajectory (not imposing any local probabilistic rules!)
Only we use the found probabilities to estimate the probability density of its position,

— stationary density has strong localization property — to thermal equilibrium predicted
by quantum mechanics — ground state density of corresponding Hamiltonian.




MERW evolution:
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First “stochastic shift” toward near (overlapping) eigenvectors (sub-diffusion),
then “deexcitate” toward nearer ground state (super-diffusion)

initial localized probability 10 steps 100 steps 1000 steps
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Local behaviour -  Future trajectories - Full trajectories

(GRW) (/] (MERW)
/ / /{H(x) x w(/ / %/ /
G Past trajectories
1) ec g=P¥ X
(x) x ®(x)
"static" ( P (x)) Hx) & cpz(x)lp(x)
statistical physics (=¥2()
stationary density for '.'n'f'.'n'.'té potential well on [0,1]: iﬁ@j — b(x) = sin(rx)
A - S VAR .-
[I(x) =1 | [I(%) = %sin(nx) | [1(x) = 2 sin?(mx)

GRW: assume some concrete transition probabilities
MERW: assume there is no base to assume
anything concrete about transition probabilities



Add potential to emphasize some scenarios: Boltzmann distribution
maximizes entropy while fixed sum of energies (minimizes free energy)

max  (X;p;In(1/p) — X;piE) = In(X;e™")  for p; o e Ei
(pi):Xipi=1

equiprobable Boltzmann Boltzmann
paths (MERW) paths trajectories
1 Y3 V2 Y1 Y3 Y2 noooe T3 72
) o = o o
£ - 2 .
— - — o £ ‘
VO 0 0 0 00 | 1 0 ~_
g P(y1) = P(y2) = P(y3) P(y;) > P(yz) > P(y3) P(y1) > P(yz) > P(y3)
o
% —(Wi1 — 29 + Yip1) = Eo¥py —(io1 — 2¢; + i) + Vi = Egpy —AY + VY = E,¥
D 2 . 2
© T X ;i T X ;i [(x) o< ¥=(x)

energy of path (ytyt+1 -"ys) IS V)’t)’t+1 Tt V;’s—l)’s



Boltzmann distribution among paths — use matrix.  M;; = Aije‘ﬁVif

S S — M]/Oyl ." Myl—lyl lpyl —

Y1iV2 7 YVi-1Y1 yL l/))/o yL lpyo

e _:B(Vyoh +VY1V2 +"+VV1_1Y1) l/)]/l

SVO )41

Eigenequation for 1D lattice: € — time step, 6 — lattice constant
Vi1tV VitVita

Ay = M), =e Pz Y +e PV, +e P2 Yy

Vioa +V; Vi+Vigq
A=Y+ Y+ —€p > Y1+ Vi + > Yiv1
~1
A = i+ + P — 3BV /—3Y; /" 3pe
3 — A¢ 1 Y1 —2¢; + Y44
3,86 lpl Bﬁ € + llpl
€ >0
52 3—A¢ N
e=g . Eo=2 EY = ( ﬁA+V)‘P

Going to normalized ¥4 (x) stationary probability density for the lowest possible E

xle PRy woy) 3 tBEN (x| (Wily) Wo )
e~tBE0 W (x) e~ tBEo W, (x)

Propagator: St(x,y) =



Time dependence — e.g. potential can vary with time: M}, = APV

! —_ t —
energy of path (V¢Vesr - ¥s) 18 Wiy, + -+ VT, where Vi = Vi;(t)

Generalized dominant eigenvectors: density on the end of past and future ensembles

- _ ., <

Zi(Mt_lMt_l+1 Mt_l)l] Zj(MtMt+1 "'Mt+l_1)ij

t . 1; t . 1
¢j = jim NEQ Vi = lim NE(D) (2 0)

. Zi(Mt_lMt_H-l-"Mt)i ] - - . Nt+1(l+1)
((pHTMY); = lim T L= tpitt where At = lim o

o (MMt Mt . Nt

(Mtlpt-l_l)i — lll)rglo Nt+HL(D) L= Atlpi where Ab = lll)rg NEFL(D)

Stationary probability: p; = ¢y, propagator Sij = Tt]#

]

(MtMt+1 Ms_l)ij l/JS
j
Attt gs-1 l/Jf

(Sts)ij — (St5t+1 "'Ss_l)ij —

Conserved probabilitv? (0H)Tt = ( t)TMtht“:( t)TMtﬁ:Z( L+H1)T ) t+1
onserved probability? )Y ® T ) = (@ Y

Continuity equation & 1= 1 (exact values only balance between ¢ and )

Final evolution equation: Attt = (MHT pt Mttt = Qtyt




Adiabatic approximation: If VV is locally constant, ¢ and i are approximately
right and left dominant eigenvectors of M ... but generally:
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Boltzmann distribution among paths is time-symmetric

It is effective model: only represents our knowledge
We know about the change — that later particle should be in the well,
so earlier it should be nearby



Now for 1D lattice there appears additional time derivative:

Aehy = (MY D = PlT + ™ + ik — 3BV /=3y

i L IR B St £, 2% tt t._ 3-Ae
’3 e Eelpx ~ 30 E + Vxl/)x for Ee — 3ef
2
Finally choosing € = g—a In infintesimal limit we get evolution equations:
d ~ d ~ ~ p
—®=p(E-H)® —~W=p(H-E)¥ for H=—-2A+V

@ should evolve forward in time (to be stable), ¥ backward
In adiabatic approximation ® » ¥ for E(t) = (®(O)|H®)WP(t))

%(cblp) =B (((E — ﬁ)cp) Y+ O(H - E)‘P) = a((AP)Y — ©(A¥)) = aV - (VO)¥ — O (VY))

Continuity equation: i,o =-V-J] for J=a(®dV¥Y - LIJVCID)

Quantum (Y € C) : j = z—ml (YVy —yYVy) substituting Y = J_ (CI> + V)
Ly ,—y )
j= he a (@ — iP)V(D +i¥) — (@ + P)V(P — i¥)) = — (OVY — PVD)
-Al‘ml h 2m 1 2m
Suggesting to choose a=-— =a=-




d . 20 Ao
a(q>|()tp) = B(®|(E — H)OWP) + (@] —=¥) + B(®|0(H - E)V¥)

Ehrenfest equation: (0) = ( )+ B¢|0, H])

(%, A] =2%v N d;’” (2aV) = ) for  p=2aV=hvV
Now [p, H| = [AV,V] = AVV = E(p) = B(AVV) = (VV) = [ p(x)VV (x)dx

Getting opposite than expected: m;—;(ﬁ) = (VI/)
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o 3 %o ) i 8 _
{0 VY=0 (0,V) >0 (0:V) (0:V) =0
=

S| t




In quantum mechanics ¥ is complex function
(YY) = const because (Y| — et/ | while |yP) — e HHY )

In MERW @& and ¥ are real nonnegative functions
(®|¥) =const because (®| - e PtH=EN(P| while |¥) > cFtH=E)|p)

This time momentum operator is not self-adjoined:

p = hV pT = —hV
p? also is not self-adjoined, so we have to use pTp instead
_ h* HTPh
Aol gy Py
2m 2m

For adiabatic approximation (¢ = W) we get Heisenberg principle analogue:
0 <((X + AP)PI(X + AP)¥) = (¥|(X — 1) (X + AP)¥) = (X%) + *(pTp) — Ah

Discriminant < 0:
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Two particles — consider trajectory in the space of pair configurations

attracting potential independent repelling potential
-1 -1
Vi=-(x - yI+1) V=0 Vi=+(x - yt1)
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o
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-§ 4 types of
N additional
'8 : edges
= \_to compensate
i | " these vertices /.
ié/: /\ :
3 : x Ty N

Thermodynamical Pauli exclusion principle:
repelling particles choose separate dynamical equilibrium states



Various number of particles: vertex = configuration
For example adjacency matrix for fermions on length 4 segment graph

/%
/ 7/ \\
|j< N

\ N\ //

|n) - sum of all n! permutations
aln) = njn — 1) atfn—=1) = |7) ata|n) = n|a) [a,at =1
Standard normalization: |n) = |n)/Vn!

aln) = vnln — 1) atin — 1) = vn|n) (@)"10) = = In)




Bose-Hubbard model — repulsing bosons on lattice

-~ ~ta L UN 4 ra A R
Hgy = — 2 a;rai +52 n;(n; — 1) ...+ZV(L)ni + z Vi (i, j)n;n;

(i,j)e& eV eV I,jEV
Accordingly to MERW: diagonal terms = self-loops (“paying for staying”)

T ~T A~ _ —eBV(configuration before and after transition) .
Hygpryw < — E ;a;e BV (config ) ~

(i,j)e€
~ — 2 &}Ldi + efd 2 V' (configuration after transition) d;rdi
(i,j))EE IEV

Three € order approximations used exactly as for lattices: e €V =~ 1 — BV,
that for neighboring vertices, V and coordinates of dominant eigenvector

are nearly equal (aja- ~ ajai).

Both Hamiltonians are practically equivalent for single particle without potential
and in continuous limit, but generally they only approximate each other.

Another question: why only one particle can transit at once?



0.02 =

0.01

-0.01

-0.02

Macroscopic soliton model — oil droplet maintaining shape due to surface tenS|on

Bouncing droplet on vertically vibrated bath is coupled to the surface
waves it generates. Becomes a “walker” moving at constant velocity. 14

Y. Couder and E. Fort, Single-Particle Diffraction and Interference at a

6 B R
N(): .}n‘f‘i
P4

12 |

Macroscopic Scale, Phys. Rev. Lett. 97 (2006)

A. Eddi, E. Fort, F. Moisy, and Y. Couder, Unpredictable Tunneling of a
Classical Wave-Particle Association, Phys. Rev. Lett. 102 (2009)

E. Fort, A. Eddib, A. Boudaoudc, J. Moukhtarb, and Y. Couderb, Path-

memory induced quantization of classical orbits, PNAS vol. 107 (2010)
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Summary of diffusion part: If instead of guessing the stochastic
propagator (assuming that the walker indeed uses these probabilities),
we assume the maximal uncertainty principle (only we use these
probabillities), the predictions are no longer in disagreement with QM.

The main “quantum corrections to stochastic models”:
localization, e.g. in semiconductor —where else it Is essential?

some further work:
- Improving mathematical formalism,

- try to motivate, derive Levy parameters from deeper dynamics,

i t Y e PR x| Wi Wily) Wo ()
see St(x,y) = 5 e

“stochastic shift toward quantum eigenstate” of perturbed trajectories,
- add velocity into consideration in analogy to Langevin equation,
- add other internal degrees of freedom like direction of spin,
- find deeper understanding of quantum mechanics,
- find more quantum corrections to standard diffusion models.

propagator as



Using MERW properties (localization) for various applications
JG Yu, ] Zhao, ] Tian, Y Tan, Maximal Entropy Random Walk for Region-Based Visual Saliency (1EEE, 2014)

L GRW GRW+GRW MERW MERW+MERW Ground
image truth



- divide picture into regions (8x8 blocks,
“superpixels”)
- create graph among regions using similarities
as weights (w;; = exp(—d(rl-,rj)),
- saliency map is the stationary probability
distribution of GRW or MERW

Original
image

GRW GRW+GRW MERW

Precision

. —— GRW+GRW
02 —— MERW+MERW

Ground

TIERW+MERW
MERW+MERW et



Centrality (graph theory,
http://en.wikipedia.org/wiki/Centrality ):
Indicators which identify the most
Important vertices within a graph.
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Examples (for the same graph):

A) Degree centrality

(e.g.C(v) < deg(v) — GRW),

B) Closeness centrality

(e.9.C(v) & Xyzy 1/d(v, W),

C) Betweenness centrality

(how many shortest paths go through v)

D) Eigenvector centrality (MERW-like),
E) Katz centrality (e.g. PageRank),

F) Alpha centrality.

Drawing 2D diagrams for graphs:
positions from two high eigenvectors
(of M or Laplacian: L = diag(deg(i)) — M)



http://en.wikipedia.org/wiki/Centrality
http://en.wikipedia.org/wiki/Degree_centrality
http://en.wikipedia.org/wiki/Closeness_centrality
http://en.wikipedia.org/wiki/Betweenness_centrality
http://en.wikipedia.org/wiki/Eigenvector_centrality
http://en.wikipedia.org/wiki/Katz_centrality
http://en.wikipedia.org/wiki/Alpha_centrality

Delvenne, J.-C. & Libert, A.-S. Centrality measures and thermodynamic
formalism for complex networks, Phys. Rev. E 83, 046117 (2011).

(e.g. Google) PageRank (GRW) — Entropy Rank (MERW)
(a = Pr(going to a random page), E = e~Y0 weight out of the graph edges)

network of Fig. 1.

TABLE I. PageRank, free-energy rank, and entropy rank for the

PageRank PageRank

Free-energy rank

Vertex (x=1) (e =0.9) Entropy rank (£ =0.03)
1 0.1705 0.1549 0.2464 0.2400
2 0.2045 0.1965 0.2487 0.2458
3 0.1818 0.1644 0.2487 0.2460
-+ 0.1705 0.1549 0.2464 0.2400
5 0.0909 0.1035 0.0032 0.0099
6 0.0455 0.0601 0.0001 0.0019
7 0.0909 0.1057 0.0032 0.0076
8 0.0455 0.0601 0.0031 0.0087

- vertex 8 becomes more interesting than 6 (pointing to “good pages”),
- cligues are swelling (localization) — problem with “link farms” ...
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Experiments on “289 000 — node piece of the Stanford web (http://www.kamvar.org/)”
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http://www.kamvar.org/

Mean first-passage time (MFPT) (e.g. for community finding)

M;; - expected minimal time to reach vertex j starting from i.
Y. Lin, Z. Zhang, Mean first-passage time for maximal-entropy random walks in complex networks (Nature, 2014)

Erdés—-Renyi (ER): Pr(— v;) = const
Barabasi—Albert (BA): Pr(— v;) « k; 0.01
(scale-free : P(k)~k7Y)

L A B E ' LR | ' R ""'lE 0-001
10° - o MERW - o MERWt

A Average|] A Average

104"; 10—5
103_‘ é I | | |
: 107 100 1000 10° 105 10°
- 5 ] MFPT;
| (a) ER model 3 .(b) BA model &
10 '"""z'd”"”é'é""';iok T oo 1000 vertices
i f

J. Ochab, Maximal-entropy random walk unifies centrality measures (Phys. Rev. E, 2012)



SimRank: measure how similar two vertices are
G.Jeh and ]J. Widom. Simrank: a measure of structural-context similarity (KDD 2002)

C . .
5(@,b) = st Sxent Lyenay S0¥)  (Lif a=b, 0if [(@) N1(b) = B)
can be expressed by Expected—f Meeting Distance (EMD) of two walkers (a, b)
s'(a,b) = Xt:(ap)ym(xx) Plt 17(L@)) for f(z)=2z or f(z)=C?
P[t] - GRW probability of path t

Link prediction - which new interactions (links) are likely to occur?

The more similar they are, the more likely they will link

Li, R. H, Yu, J. X. & Liu, J. Link prediction: the power of maximal entropy random
walk (ACM conference, 2011):

Replace GRW with MERW in P|t], getting S(a, b) = wawb 2z LxeN(a) Lyen(b) fp(xlli/ :
y

Uniform probability distribution among paths (MERW) instead of edges



27 link prediction methods (the higher the better), “ME” - maximal entropy

SM ER BA SW USAir | C.ele Yeast | Power | NetSci | GrQc | HepPh | HepTh
CTT 0.710 0.750 | 0.791 0.847 0.784 | 0.709 0.713 0.917 0.520 0.523 0.525
CTME 0.720 0.746 | 0.745 0.855 0.798 | 0.501 0.501 0.866 0.556 0.645 0.534
CK 0.805 0.883 | 0.804 0.856 0.809 | 0.715 0.501 0.799 0.513 0.501 0.513
MECK 0.940 0.981 0.845 0.936 0.856 | 0.757 | 0.501 0.975 0.517 0.501 0.503
NCK 0.502 0.501 0.501 0.708 0.706 | 0.501 0.501 0.501 0.503 0.508 0.501
NMECK 0.903 0.983 | 0.982 0.931 0.969 | 0.710 0.501 0.971 0.623 0.750 0.675
DK 0.835 0.813 | 0.983 0.836 0.838 | 0.829 0.764 0.965 0.501 0.605 0.593
MEDK 0.999 0.983 | 0.998 0.991 0.971 0.749 0.812 0.963 0.739 0.735 0.746
NDK 0.786 0.711 0.956 0.920 0.778 | 0.731 0.857 0.908 0.531 0.530 0.530
NMEDK | 0.999 | 0.983 | 0.998 | 0.997 | 0.978 | 0.970 | 0.857 | 0.996 | 0.739 0.755 0.758
RK 0.851 0.907 | 0.973 0.898 0.887 | 0.803 0.864 0.624 0.632 0.608 0.561
MERK 0.999 0.983 | 0.998 0.981 0.949 | 0.812 0.812 0.963 0.618 0.745 0.735
NRK 0.504 0.501 0.501 0.719 0.501 0.703 0.806 0.501 0.501 0.508 0.504
NMERK 0.999 0.983 | 0.998 0.983 0.975 | 0.968 0.857 0.986 0.739 0.755 0.756
MENK 0.999 0.983 | 0.998 0.936 0.975 | 0.799 0.812 0.963 0.618 0.730 0.746
NNK 0.503 0.501 0.501 0.819 0.501 0.705 0.806 0.501 0.501 0.508 0.504
NMENK 0.999 0.983 | 0.998 0.983 0.965 | 0.965 0.857 0.996 0.739 0.755 0.752
PD 0.926 0.974 | 0.953 0.971 0.866 | 0.887 | 0.857 0.722 0.666 0.618 0.628
MEPD 0.999 0.976 | 0.998 0.993 0.964 | 0.968 0.857 0.913 0.739 0.755 0.758
PDM 0.805 0.764 | 0.957 0.972 0.798 | 0.886 0.857 0.874 0.616 0.660 0.530
MEPDM 0.999 0.983 | 0.998 0.990 0.976 | 0.970 0.857 0.996 0.739 0.755 0.758
SR - - - 0.905 0.860 - - 0.955 — — -
MESR — — - 0.960 0.876 — — 0.963 — — —
CN 0.884 | 0.782 | 0.501 0.386 0.971 0.752 0.802 0.961 0.617 0.623 0.635
AA 0.886 0.781 0.501 0.409 0.975 | 0.793 0.806 0.969 0.623 0.630 0.638
HPLP+ 0.983 0.971 0.978 0.979 0.974 | 0.965 | 0.886 | 0.984 0.725 0.753 0.732
SRW 0.991 0.977 0.989 0.983 0.972 0.967 0.863 0.983 0.731 0.760 0.754




MERW - the most random among random walks
uniform distribution among paths, not edges (GRW)

- As the choice of statistical parameters of an informational channel
MERW allows to maximize channel capacity under some constraints
(language?)

- As random walk/diffusion (scale-free)
GRW: the walker indeed performs succeeding random decisions
MERW: only represents our (lack of) knowledge about a complex dynamics

- For metrics to analyze complex network
GRW sees only degrees of vertices
MERW allows to evaluate importance in the space of possible paths

- social/evolutionary entropy (Lloyd Demetrius):
“thinking” in terms of paths (reason—result chains) of possibilities?

GRW - MERW
in many cases improves performance or agreement



