15 XI | Marcin Kulczycki (UJ) A new proof of the still-life density ½ conjecture Show abstract
A "still Life" is a subset S of the square lattice Z^2 fixed
under the transition rule of Conway's Game of Life, i.e. a subset
satisfying the following three conditions:
1. No element of Z^2-S has exactly three neighbors in S;
2. Every element of S has at least two neighbors in S;
3. Every element of S has at most three neighbors in S.
Here a ``neighbor'' of any x \in Z^2 is one of the eight lattice
points closest to x other than x itself. The "still-Life conjecture"
is the assertion that a still Life cannot have density greater than
1/2 (a bound easily attained, for instance by {(x,y): x is even}).
Elkies proved this conjecture showing that in fact condition 3 alone
ensures that S has density at most 1/2. We will present a new proof.
|
15 XI | Veronika Rýžová (Silesian University in Opava) On one of Birkhoff's theorems for backward limit points Show abstract
In 1927 George Birkhoff in his book Dynamical Systems
presented a theorem that describes the behaviour of trajectories
outside of a set of non-wandering points on an arbitrary compacta.
Much later in the 1960s Sharkovsky followed up on Birkhoff's work and
published an even stronger result, this time focusing on the set of
omega limit points for interval maps. We formulate a similar statement
for a neighbourhood of a set of different types of backward limit
points for maps of the interval.
|
8 XI | Konstantinos Tsinas (EPFL) Joint ergodicity for pairwise independent sequences of polynomial growth Show abstract
In the second talk, we study the joint ergodicity problem for sequences arising from certain smooth functions with polynomial growth. We will show that for pairwise independent sequences from this class, we have a complete characterization of joint ergodicity and that for linearly independent sequences we have joint ergodicity just by assuming that the transformations involved are ergodic, which is the optimal condition. This generalizes earlier results that were restricted to averages with a single transformation as well as recent results of Frantzikinakis and Kuca that involve integer polynomials. We discuss some generalizations of concepts that will be mentioned in the first talk and present an outline of the techniques and the tools required for the proof of our main theorems. Joint work with S. Donoso, A. Koutsogiannis, B. Kuca and W. Sun. |
8 XI | Andreas Koutsogiannis (AUTh) The joint ergodicity phenomenon: History and recent developments Show abstract
Furstenberg’s celebrated proof of Szemerédi's theorem (on arbitrarily long arithmetic progressions in dense subsets of integers) initiated the study of the limiting behavior of multiple ergodic averages. In the same work (1977), under enough independence (i.e., under weakly mixing assumptions) he showed that for averages with independent linear iterates the limit exists and it is the "expected one". This result was first extended by Bergelson in the polynomial setting (1987) and, in the most recent years, there is a plethora of results for various systems and iterates, which led to the notion of "Joint Ergodicity." The first part of the talk will be about the aforementioned results, while the second one will focus on the characterization of joint ergodicity in various cases a la Berend-Bergelson. In both cases, we will present the most recent developments in the topic. Joint work with S. Donoso, B. Kuca, W. Sun, and K. Tsinas. |
25 X | Silvia Radinger (University of Vienna) Rigidity of Toeplitz and Bratteli-Vershik Dynamical Systems Show abstract
In this talk we will study measure-theoretical rigidity and partial
rigidity for classes of Cantor dynamical systems including Toeplitz
systems and enumeration systems. With the use of Bratteli-Vershik
dynamical systems we can control invariant measures. Their structure
in the Bratteli diagram leads us to find systems with the desired
properties. Among other things, we will analyse different Toeplitz
systems for their rigidity and show that there exist Toeplitz systems
which have zero entropy and are not partially measure theoretically
rigid with respect to any of its invariant measures. Further we show
varying rigidity in the family of enumeration systems defined by a
linear recursion.
This talk is based on joint work with Henk Bruin, Olena Karpel and
Piotr Oprocha.
|
17 X | Lorenzo J. Díaz (PUC-Rio) Rational ergodicity for $\mathbb Z^d$ extensions of certain
interval exchange transformations. Show abstract
Heterodimensional cycles of hyperbolic measures.
Abstract: We will introduce and discuss the concept of a
heterodimensional cycle between hyperbolic ergodic measures (of
different indices). In the setting of partially hyperbolic dynamics
with a one-dimensional center, we study the impact of such cycles on
the topological properties of the space of invariant measures. We also
present some settings for the occurrence of such cycles and discuss
their robustness. This is joint work with Ch. Bonatti (CNRS & Institut
de Mathématiques de Bourgogne) and K. Gelfert (UFRJ). |
17 X | Katrin Gelfert (UFRJ) Circling Furstenberg Show abstract
Considering random products of independently and identically
distributed matrices of SL(2,R), a classic result of Furstenberg
states exponential growth of the norm of the matrices (except in some
‘degenerate’ cases). Another way of looking at it is to consider the
linear cocycle with a Bernoulli automorphism at its base and the
corresponding multiplication of the matrices. We surround the
‘limitations of possible extensions’ of this statement by showing that
there are loosely Bernoulli automorphisms with zero maximal exponent
and entropy close to the maximum possible. This is joint work with M.
Rams (IM PAN) and L.J. Díaz (PUC-Rio). |
11 X | Henk Bruin (University of Vienna) Rational ergodicity for $\mathbb Z^d$ extensions of certain
interval exchange transformations. Show abstract
The original motivation were temporal statistical properties
of ergodic sums over circle rotations, as studied by Avila, D.
Dolgopyat, Duryev and Sarig (2011), by means of a $\mathbb Z$-extensions
of the circle rotation, suspension flows and renormalization on the
corresponding surface. We
(i) simplify the proofs, largely bypassing symbolic dynamics,
(ii) extend the method to certain interval exchange transformation and
(non-Ehrenfest) wind-tree models, and (iii) obtain error estimates of
the temporal convergence of
the underlying ergodic sums. (The law in question is called rational
ergodicity, in an infinite measure setting).
(Joint work with Charles Fourgeron, Davide Ravotti and Dalia Terhesiu)
|
4 X | Jakub Konieczny (University of Oxford) Hadamard quotient theorem for generalised polynomials
Show abstract
It is clearly true that the product of two integer-valued
linear recurrence sequences is again an integer-valued linear
recurrence sequences. The Hadamard quotient theorem gives a partial
converse to this statement: If the quotient of two integer-valued
linear recurrence sequences is again integer-valued then it is a
linear recurrence sequence. The subject of the talk is an analogous
result for generalised polynomials, i.e., sequences obtained from
polynomials with the use of the integer part function, addition and
multiplication. The talk is based on an upcoming paper with J.
Byszewski.
|
14 VI | Jan Boroński (Jagiellonian University), Boris Perrot (Paris-Saclay University) On roundness of rotation sets in dimension 2
Show abstract
In the first part of this talk we shall give a brief introduction to rotation sets of 2-torus homeomorphisms and the current state of the art. Then we shall discuss some of the work in progress at Jagiellonian University. |
10 V | Kristijan Kilassa Kvaternik (Jagiellonian University) Tangential homoclinic points locus of the Lozi maps
Show abstract
We consider the dynamics of the two-parameter Lozi family of
planar homeomorphisms, more precisely, the relationship between the stable
and unstable manifold of the hyperbolic fixed point X of that family in
the first quadrant together with their intersections, homoclinic points.
We present curves in the parameter space which represent the border of
existence of homoclinic points of X and determine all possible homoclinic
points in the border case. Within the determined border, we introduce a
specific region in the parameter space for which the period-two orbit is
attracting and there are no homoclinic points of X. In this region we show
that the Lozi map has zero topological entropy, expanding the results of
Yildiz. In addition, we discuss the basin of attraction for the Lozi map
determined by the stable manifold of the fixed point in the third
quadrant.
This is joint work with Michał Misiurewicz (IUPUI, Indianapolis) and Sonja
Štimac (University of Zagreb, Croatia). |
26 IV | Reza Mohammadpour (Uppsala University) Restricted variational principle of Lyapunov exponents for
typical cocycles
Show abstract
The variational principle states that the topological entropy of a
compact dynamical system is a supremum of measure-theoretic entropies
of invariant measures supported on this system. Therefore, one may ask
whether we can get a similar formula for the topological entropy of a
dynamical system restricted to the level sets, which are usually not
compact. In several cases it was then possible to prove the so-called
restricted variational principle formula: For every possible value
$\alpha$ of the Lyapunov exponent, the topological entropy of the set
of points with the Lyapunov exponent $\alpha$ is equal to the supremum
of measure-theoretic entropies of invariant measures with Lyapunov
exponent $\alpha$.
In this talk, I will investigate the structure of the level sets of
all Lyapunov exponents for typical cocycles. I will show that the
restricted variational principle formula for a vector of Lyapunov
exponents holds for typical cocycles. This generalizes the works of
Barreira-Gelfert and Feng-Huang.
|
26 IV | Dario Darji (University of Louisville) Introduction Prevalence and Applications Show abstract
Suppose we have a collection of objects such as such as the
group of homeomorphisms or diffeomorphisms. We choose an object from
this collection at “random”. What dynamical properties does this
object have? The usual notion of a “random” or a “large” collection is
that of generic or comeager, i.e., we show that the collection of all
objects with certain dynamical properties contain a countable
intersection of dense open sets. There is an alternate natural notion
of bigness called prevalence and its complement called shy sets or
Haar null sets. This notion of smallness often highlights different
properties than the usual notion of generic. In this introductory
talk, we give a background on prevalence, discuss a variety of results
involving prevalence and analysis, prevalence and automorphism groups
and state some open problems concerning prevalence and dynamics.
|
19 IV | Abdul Gaffar Khan (University of Delhi) On expansivity through pointwise dynamics Show abstract
In 1950, Utz introduced expansive homeomorphisms, a concept
widely acknowledged in current literature. Recently, there has been
notable progress in exploring this idea from a pointwise dynamics
perspective. This not only enhances existing theories but also reveals
insights not accessible through a global dynamics approach. This talk
focuses on two such notions: uniformly expansive points and minimally
expansive points. We will explore the presence of uniformly expansive
points in homeomorphisms on bounded intervals and their implications
for identifying expansive homeomorphisms on the unit circle.
Additionally, we will discuss how minimally expansive points
contribute to topological stability of a point by establishing a
pointwise form of Walters' stability theorem. We will discuss how this
result can be applied for homeomorphisms on intervals which is not the
case with other existing forms of Walters' stability theorem. This
talk is based on joint work with Tarun Das. |
12 IV | Carlos Reyes (Universidad Autonoma de San Luis Potosi) Measures of maximal entropy of bounded density shifts. Show abstract
Bounded density shifts are examples of hereditary subshifts.
Bounded density shifts are defined by disallowing words whose sum of
entries exceeds a value depending on the length of the word. After
presenting some examples and reviewing the concepts of topological
entropy and measure-theoretic entropy, we will provide sufficient
conditions for bounded density shifts to have a unique measure of
maximal entropy.
This is joint work with Felipe García-Ramos and Ronnie Pavlov. |
5 IV | Mateusz Więcek (Wrocław University of Science and Technology) Universality of K-shifts Show abstract
Let $G$ be an infinitely countable amenable group and $K$ be a finite subset of $G$, containing the unit $e$ and at least one more element. A set $V\subset G$ is called $K$-separated if the sets $Kv$, where $v$ ranges over $V$, are pairwise disjoint. A $K$-separated set $V$ is called maximal if for every $g\notin V$, $V\cup\{g\}$ is not $K$-separated. The collection of indicator functions of all maximal $K$-separated sets, treated as symbolic elements over $G$, is a closed and shift-invariant subset of $\{0,1\}^G$, hence it forms a topological dynamical system. We call such system the $K$-shift and denote it by $\Omega_K$. We show that if a $K$-shift supports at least one free measure, then it is universal in the sense that for every free ergodic measure-theoretic system $(Y,\nu,G)$ of entropy smaller than (topological) entropy of $\Omega_K$, there exists a measure $\mu$ supported by $\Omega_K$, which is isomorphic to $\nu$. We also show some partial generalizations of this result for general $G$-subshifts with specifications (we say that a symbolic system $(X,G)$ has specification with margin $M$ if for any two subsets $F_1,F_2$ of $G$, such that $MF_1\cap MF_2=\varnothing$, any $X$-admissible pattern over $F_1$ and any $X$-admissible pattern over $F_2$ coexist in some element of $X$).
The talk is based on the joint work with Tomasz Downarowicz, Benjamin Weiss and Guohua Zhang.
|
22 III | Istvan Kolossvary (Alfréd Rényi Institute of Mathematics) Interpolating between different notions of dimension
Show abstract
Various notions of dimension capture how efficiently a set can be covered from different aspects. These can lead to different values for a set which is “inhomogeneous” in some sense. A recent trend in dimension theory has been to define one parameter families of dimensions which interpolate between two well-known dimensions in order to uncover finer geometric scaling properties of such sets. The talk will present how this can be done in a meaningful way and present results and applications for the class of planar self-affine carpets. Based on joint works with A. Banaji, J. M. Fraser and A. Rutar. |
22 III | Lino Haupt (Friedrich Schiller University Jena) Multivariate mean equicontinuity and finite-to-one extensions Show abstract
Topological dynamical systems with measure theoretically discrete
spectrum can be organized into a hierarchy.
This is done by the invertibility properties of their continuous factor
maps to their maximal equicontinuous factor (MEF).
Many such invertibility properties correspond to equivalent intrinsic
dynamical rigidity properties.
One of those is mean equicontinuity, which can be described in various ways.
Its corresponding invertibility property is that the continuous factor map
to the MEF is measure theoretically an isomorphism.
Outside of the hierarchy lie systems like the Thue-Morse subshift whose
continuous factor map to the MEF is measure theoretically 2:1.
Other examples of such a form are given by Iwanik and Lacroix or by
Williams.
They exhibit rich spectral properties such as a singularly continuous part
of the spectrum and thus do not fall into the aforementioned hierarchy.
Our aim is to extend the hierarchy to also handle m:1 extensions.
In the past few years those classes of systems have been studied under
the viewpoint of multivariate forms of mean sensitivity, as for example
by Li, Ye, Yu (2021).
We propose a notion of multivariate mean equicontinuity called mean
m-equicontinuity, which satisfies a Auslander-Yorke type dichotomy to
the aforementioned multivariate mean sensitivities.
We call a continuous extension of another system that is measure
theoretically m:1 an m:1-topomorphic extension and conjecture an
equivalence between mean m-equicontinuity and being an m:1-topomorphic
extension of the MEF.
We prove that m:1-topomorphic extensions of equicontinuous systems are
mean m-equicontinuous and provide some ideas for the converse direction.
This is joint work with J. Breitenbücher and T. Jäger. |
15 III | Adam Kanigowski (Jagiellonian University/University of Maryland) Chaotic properties of smooth dynamical systems Show abstract
One of the central discoveries in the theory of dynamical systems was that differentiable (or smooth) systems can display strongly chaotic behavior and in many ways behave like a sequence of random coin tosses. In this talk we will describe appearance and interactions of chaotic properties in smooth dynamics. We will highlight main developments, describe the state of the art and discuss some open problems in the field. |
15 III | Marian Mrozek (Jagiellonian University) From Ważewski Theorem to Combinatorial Topological Dynamics Show abstract
Both Roman and I grew up scientifically on Ważewski Retract Theorem. Our research interests sometimes diverged, sometimes converged, but were always somehow intertwined. Recently, they merged again in a joint paper touching combinatorial topological dynamics. In the talk I will present a short story of half a century of our friendship and collaboration. |
15 III | Piotr Oprocha (AGH University) On dynamics of Lorenz maps Show abstract
Lorenz maps are one-dimensional maps with a single discontinuity, which appear in a natural way as Poincaré maps in geometric models of the well-known Lorenz attractor. In this talk we will discuss connections between periodic points, completely invariant sets, transitivity and renormalizations of expanding Lorenz maps.
This talk will be based in part on joint works with P. Porotski and P. Raith and with Ł. Cholewa. |
8 III | Alexandre Trilles (UJ) Continuous-time Feldman-Katok pseudometric and loose
Bernoullicity of zero entropy flows. Show abstract
We introduce a continuous-time version of the Feldman-Katok pseudometric (FK-pseudometric) following some ideas of Marina Ratner. For discrete-time dynamical systems FK-pseudometric is a useful tool in the study of zero entropy loosely Bernoulli transformations (following Ratner’s suggestion we call them loosely Kronecker). GarcĂa-Ramos and Kwietniak characterized loosely Kronecker transformations using the FK-pseudometric. With our version of the FK-pseudometric for flows (continuous-time dynamical systems) we have a characterization of loosely Kronecker flows analogous to the one by GarcĂa-Ramos and Kwietniak. Using FK-pseudometric we also provide a purely topological characterization of every topological model of a loosely Kronecker flow. |
8 III | Melih Emin Can (UJ) On Equivalence of Asymptotic Average Shadowing and Vague
Specification Properties for Topological Dynamical Systems Show abstract
A topological dynamical system is a pair (X,T) consisting of a compact metric space X and a continuous self-map T of X. Recently Downarowicz and Weiss [Ergodic Theory and Dynamical Systems, to appear] asked what is the relation between the vague specification property (introduced by Teturo Kamae in the 1970s) and the weak specification property (a variant of the specification property introduced by Bowen). We prove that the vague specification property is equivalent to the asymptotic average shadowing property, a variant of the classical shadowing property introduced by Gu in 2007. Since the weak specification property implies the asymptotic average shadowing property but the converse is not true, we have a complete answer to Downarowicz and Weiss' question. This is joint work with Alexandre Trilles.
|
26 I | Daniel Sell (Nicolaus Copernicus University in Toruń) On finitely many semicocycle discontinuities in Toeplitz subshifts Show abstract
One way to describe Toeplitz subshifts is via so-called semicocycles. The semicocycle's discontinuity points and their orbits are related to non-periodic positions and proximal components. In this talk we consider the question whether we can, in the case of a Toeplitz subshift with infinitely many discontinuity points, find a factor subshift with only finitely many of them. For this we discuss a sufficient and a necessary condition. The results are part of ongoing joint work with Franziska Sieron (FSU Jena).
|
19 I | Sejal Babel (UJ) Wiener-Wintner theorem revisited Show abstract
A "single orbit" approach to dynamics is the study of the
interplay between the global properties of a dynamical system and the
behaviour of its orbits. The talk will investigate how much
information about the system can be deduced from the existence of an
orbit satisfying the Wiener-Wintner theorem. We will use this
information to provide a simple criterion for discrete spectrum based
on properties of a generic point of an ergodic invariant measure.
The talk is based on joint work with Melih Emin Can, Dominik Kwietniak
and Piotr Oprocha.
|
19 I | Veronika Rýžová (Silesian University in Opava) Alpha-limit sets Show abstract
The backward dynamics of a system could be far richer than
its forward counterpart. The talk will consist of an example
illustrating such behavior, demonstrating how one can define the
backward limit sets (so called alpha limit sets) of mappings on
compact metric spaces in different ways. Then it will proceed to the
investigation of the connection between these limit sets and the
Birkhoff center, how the alpha limit sets are related to omega limit
sets and whether their relation is somehow restricted.
|
8 XII | Konstantinos Tsinas (University of Crete) Multiple ergodic averages for sparse sequences along primes Show abstract
Multiple ergodic averages for sparse sequences along primes
Abstract: We discuss convergence results (in L^2) for multiple ergodic averages along sequences of polynomial
growth evaluated at primes. Building on the work of Frantzikinakis, Host, and Kra who showed that polynomial ergodic
averages along primes converge, we generalize their results to other sequences with polynomial growth. Combining our
results with Furstenberg's correspondence principle, we derive several applications in combinatorics. The most
interesting application is that positive density subsets of natural numbers contain arbitrarily long arithmetic
progressions with common difference of the form [p^c], where c is a positive non-integer and p is a prime number.
The main tools in the proof are a recent result of Matomäki, Shao, Tao, and Teräväinen on the uniformity of the
von Mangoldt function in short intervals, a polynomial approximation of our sequences with good equidistribution
properties, and a lifting trick that allows us to replace Z-actions on a probability space by R-actions on an
extension of the original system. Joint work with A. Koutsogiannis. |
8 XII | Andreas Koutsogiannis (Aristotle University of Thessaloniki) Multiple ergodic averages for polynomial sequences along primes Show abstract
Multiple ergodic averages for polynomial sequences along primes
Abstract: After Furstenberg's celebrated extension of Szemeredi's theorem (every subset of natural numbers of
positive upper density contains arbitrarily long arithmetic progressions) and its (integer) polynomial extension by
Bergelson-Leibman, one of the main objects of study in ergodic theory is the understanding of the limiting behavior
of multiple ergodic averages. In this talk, we will deal with the case of polynomial iterates and present how the
problem evolved during the past few years. Also, because of the uniformity, in terms of Gowers norms, of the von
Mangoldt function (a recent result by Green-Tao), we will see how one can extend the averaging along natural numbers
results to the corresponding ones, averaging along primes. |
1 XII | Samuel Mellick (UJ, Dioscuri Centre) An introduction to rank gradient and cost Show abstract
The rank of a group is the minimum size of a generating set. The
classical Nielsen-Schreier theorem implies that the rank of subgroups
is at worst sublinear in the index. In many cases however there exist
significantly more efficient generating sets. Rank gradient is a
notion that quantifies this.
In this talk, I will introduce rank gradient and explain its
connection to another invariant from ergodic theory (the cost). I will
also explain some interesting examples where we are able to compute
the cost and thus show vanishing of rank gradient. No prior knowledge
of rank gradient or cost will be assumed. |
24 XI | Bernardo Carvalho (University of Rome Tor Vergata) Continuum-wise hyperbolicity Show abstract
In this talk, I will introduce the classical example of P.
Walters of the pseudo-Anosov diffeomorphism of the two-dimensional
sphere, note several properties that are not very clear at first
glance, and discuss a generalization of hyperbolicity called
continuum-wise hyperbolicity that is present in this example. Then I
will discuss some consequences of cw-hyperbolicity and recent advances
in the classification of cw-hyperbolic surface homeomorphisms. If
there is still time, I will prove the density of periodic points in
the non-wandering set of cw-hyperbolic homeomorphisms with jointly
continuous stable/unstable holonomies. These are joint works with
Alfonso Artigue, José Vieitez, Welington Cordeiro, Rodrigo Arruda,
Alberto Sarmiento, and Elias Rego. |
27 X | Dawid Bucki (UJ) Characterisation of loosely Bernoulli equilibrium states Show abstract
|
13 X | Rodrigo Bissacot (University of São Paulo (USP), Brazil) The Many Faces of Gibbs Measures Show abstract
We explore the notion of Gibbsiannes in several frameworks including
symbolic dynamics, probability, mathematical physics, and operator algebras. We
show the equivalence among several different notions/definitions of Gibbs state in different
settings and possible consequences. Mainly based on a joint work with Bruno Fukushima-Kimura (Hokkaido University, Japan),
Rafael Pereira Lima (Victoria University of Wellington, New Zealand) and Thiago Raszeja (AGH University of Krakow, Poland)
|
6 X | Graccyela Salcedo (UMK Toruń) Contracting on average IFSs on the circle by a metric change Show abstract
In this talk, I will present results obtained in a joint
work with Katrin Gelfert.
I will provide historical context motivating our study, define
iterated functions systems (IFS) and associated contracting on average
conditions, and present illustrative examples on the interval. I will
also explore cases involving IFSs of circle diffeomorphisms,
highlighting instances where contraction is not uniform. Our main
result establishes the existence of a metric that makes an IFS of
circle diffeomorphisms contracting on average. To finish I will define
the Lyapunov exponent in this context and I will present a result
establishing large deviations for this exponent. |
16 VI | Anima Nagar (Indian Institute of Technology Delhi) Polygonal billiards on hyperbolic plane Show abstract
We consider billiards on rational polygonal tables on the
hyperbolic plane, and look into the dynamical properties that they
display. |
2 VI | Sonja Štimac (University of Zagreb) The pruning front conjecture and classification of the Hénon
maps in the presence of strange attractors Show abstract
I will talk about recent results on topological dynamics of
the Hénon maps obtained in joint work with Jan Boroński. For a
parameter set generalizing the Benedicks-Carleson parameters (the
Wang-Young parameter set) we obtain the following: The pruning front
conjecture (due to Cvitanović, Gunaratne, and Procacci); A kneading
theory (realizing a conjecture by Benedicks and Carleson); A
classification: two Hénon maps are conjugate on their strange
attractors if and only if their sets of kneading sequences coincide,
if and only if their folding patterns coincide. The classification
result relies on a further development of the authors’ recent inverse
limit description of the Hénon attractors in terms of densely
branching trees.
(Joint work with Jan P. Boroński)
|
26 V | Marlies Gerber (Indiana University) Non-classifiability of Kolmogorov Diffeomorphisms Show abstract
By Ornstein's isomorphism theorem, two Bernoulli shifts are
isomorphic if and only if they have the same entropy.
It is natural to ask whether a classification up to isomorphism is
possible for other families of transformations,
such as Kolmogorov automorphisms (or K-automorphisms for brevity). It
is known that K-automorphisms cannot
be classified by a complete numerical Borel invariant. This left open
the possibility of classifying K-automorphisms
with a more complex type of Borel invariant. We show that this is
impossible, by proving that the collection of
isomorphic pairs of K-automorphisms is not a Borel set. Our results
also hold for K-automorphisms that are smooth
diffeomorphisms of the five-dimensional torus. I will include a brief
introduction to Kakutani equivalence and indicate
how to simultaneously obtain non-classifiability for the isomorphism
and Kakutani equivalence relations.
This is joint work with Philipp Kunde. |
12 V | Divya Khurana (IIIT Delhi) Smooth Anosov Katok Diffeomorphisms With Generic Measure Show abstract
We discuss the combinatorial construction in Ergodic Theory. We
briefly discuss a very special technique “Approximation by conjugation,”
that allows the construction of exciting maps on the manifolds with pre-
scribed interesting topological and measure-theoretic properties. We present
an example of an Invariant measure for the smooth category, which is a
generic but non-ergodic measure satisfying other topological, mixing and
ergodic properties on the 2-Torus. Also, present an explicit collection
of the set containing the generic points of the system with interesting
values of its Hausdorff dimension. As such, this talk should interest a
broad readership, including those interested in Smooth Ergodic Theory,
the Existence of Invariant measure, the Anosov Katok Method, Generic
measures of the smooth category and the Hausdorff Dimension of the set
containing only generic points.
Keywords: Ergodic theory, Invariant measure, Generic and non-generic points,
Hausdorff dimension, Anosov Katok method |
28 IV | Martín Muñoz López (UASLP) Measure sequence entropy pairs and sensitivity Show abstract
Sequence entropy was introduced by Kushnirenko and it provided the first link between the functional analytic ergodic theory of von Neumann and the entropy-related ergodic theory of Kolmogorov's school, by proving that a system has pure point spectrum if and only if it has zero sequence entropy.
Sensitivity (to initial conditions) is a classical notion for topological dynamics that is helpful to define chaos. For measure preserving systems sensitivity is a very weak notion. Nonetheless, a notion called called μ-mean sensitive is much natural in this context and García-Ramos proved that every system with an ergodic measure is either μ−mean sensitive or has discrete spectrum. In consequence, every system with an ergodic measure is μ-mean sensitivity if and only if it has positive sequence entropy.
In this talk I will present a local version of the last result, which answers a question of Li and Yu.
This is joint work with Felipe García-Ramos. |
21 IV | Udayan "Dario" Darji (University of Louisville) Generalized Hyperbolicity and the Shadowing Property in Linear Dynamics Show abstract
In recent years, there has been a flurry of activity in what
is known as “Hyperbolic Linear Dynamics”. We introduce the basic
notions such as hyperbolicity, shadowing and structural stability in
the context of linear operators on separable Banach spaces. We discuss
some recent developments and open problems.
|
14 IV | Magdalena Foryś-Krawiec (AGH University of Science and Technology) Homeo-product-minimality of pseudo-circle Show abstract
A compact space $Y$ is called homeo-product-minimal if, given any minimal
system $(X, T)$, it admits a homeomorphism $S : Y \rightarrow Y$ such that the product
system $(X × Y, S × T)$ is minimal. The idea of homeo-product-minimality is
motivated by the fact, that there exist minimal spaces, whose Cartesian powers
do not admit minimal homeomorphisms. In [1, Theorem B] the authors listed
the homeo-product-minimal spaces and raised the question whether the R. H.
Bing’s pseudo-circle is homeo-product-minimal.
In the talk we will show how to modify Handel’s construction [2] of the
pseudo-circle to obtain the following result, which answers the question from
[1]:
Theorem 1. The pseudo-circle is homeo-product-minimal.
The results presented during the talk are obtained as a joint work with Jan
Boroński and Piotr Oprocha.
References:
[1] M. Dirbák, L. Snoha, V. Špitalsky, ˇ Minimal direct products, Trans. Amer.
Math. Soc. 375 (2022), 6453–6505.
[2] M. Handel, A pathological area preserving C∞ diffeomorphism of the plane,
Proc. Amer. Math. Soc. 86 (1982), 163–168. |
31 III | Kosma Kasprzak (Jagiellonian University) On the topological conjugacy relation on the space of Cantor minimal systems Show abstract
|
24 III | Dominik Kwietniak (Jagiellonian University) Choquet simplices as spaces of invariant probability Show abstract
Many examples illustrating the limitations of the dynamical systems theory are
defined on quite exotic spaces. We also know that the geometry of
one-dimensional
manifolds severely restricts available dynamics. On the other hand, physically
relevant models of real-life phenomena result in smooth dynamical systems acting
on manifolds. These observations are behind one of the most intriguing questions
in the dynamical systems theory: given a property P that a dynamical system
may or may not have, and a family C of dynamical systems decide whether a
system exhibiting P exists in C. A very famous instance of that question is the
smooth realisation problem. It asks if every measure preserving system
isomorphic
to a system given by a smooth diffeomorphism of a compact manifold preserving
a measure equivalent to the volume element. The question is inspired by a brief
remark made in 1932 by Johnny von Neumann in his foundational paper on ergodic
theory and remains unresolved.
During my talk, I will discuss the recent progress on the following variant of
the realisation problem: which nonempty Choquet simplices can be realised as
simplices of invariant measures for minimal homeomorphisms on manifolds.
(joint work with Sejal Babel, Jernej Cinc, Till Hauser, Piotr Oprocha)
|
17 III | Lino Joss Fiedel Haupt (Friedrich Schiller University Jena) Construction of smooth isomorphic extensions which are not almost
automorphic Show abstract
This is joint work with Tobias Jäger.
Due to a result by Glasner and Downarowicz, it is known that a minimal
system
is mean equicontinuous if and only if it is an isomorphic extension of its
maximal equicontinuous factor (MEF). The majority of well-known examples of
this type are in addition almost automorphic, that is, the factor map to the
MEF is almost one-to-one. The only cases of isomorphic extensions which are
not almost automorphic are again due to Glasner and Downarowich, who in the
same article construct such systems in a rather general and abstract
setting.
In this talk I present a construction using the Anosov-Katok method
which provides an
alternative way to produce such examples, and to obtain as a byproduct that
these can be realised as smooth torus diffeomorphisms. |
10 III | Jakub Byszewski (Jagiellonian University) Pisot and Salem numbers and generalised polynomials Show abstract
Generalised polynomials are polynomial-like expressions that additionally allow the use of the floor function. They can be studied using ergodic theory---in fact, they arise by evaluating a semialgebraic function along an orbit on a nilmanifold.
In previous work with Jakub Konieczny we have noticed that you can find a generalised polynomial expression that vanishes precisely at the Fibonacci numbers. Which other linear recurrence sequences can you realise that way? We show that this is the case for linear recurrences with characteristic polynomial the minimal polynomial of a: i) Pisot unit of degree 2; ii) Pisot unit of degree 3 that is not totally real; and iii) Salem number. We expect that the above list is essentially complete (except for some cheap tricks). However, proving that you cannot realise something is much more difficult. Jakub Konieczny did that for powers of an integer k>=2, and in this paper we introduce the notion of a generalised polynomial on a number field and we use methods from diophantine geometry to prove a result that hopefully is a first step in extending this further.
The talk is based on joint work with Jakub Konieczny. |
27 I | Bruno Hideki Fukushima-Kimura (Hokkaido University) A Theoretical Approach to the Stochastic Cellular Automata
Annealing and the Digital Annealer's Algorithm Show abstract
Finding a ground state of a given Hamiltonian of an Ising
model on a graph G=(V,E) is an important but hard problem. The
standard approach for this kind of problem is the application of
algorithms that rely on single-spin-flip Markov chain Monte Carlo
methods, such as the simulated annealing based on Glauber or
Metropolis dynamics. In this work, we investigate new algorithms, the
so-called Digital Annealer's algorithm, and some particular kinds of
stochastic cellular automata, the SCA and the $\epsilon$-SCA. We prove
that if the temperature drops in time n as $\frac{1}{\log(n)}$, then
the Markov chain asymptotically converges to the ground states. We
also provide some simulations of these algorithms and show their
superior performance compared to the conventional simulated annealing.
|
20 I | Piotr Oprocha (AGH University of Science and Technology) On pseudoarc and dynamics
Show abstract
The pseudoarc is an intriguing continuum that was discovered by Knaster
100 years ago. While its structure is very complicated, Bing proved that
from topological perspective, pseudoarc is the typical continuum to
encounter in the plane. In this talk I will present selected results
connecting pseudoarc as
topological object with selected properties of dynamical systems.
|
13 I | Adam Kanigowski (Jagiellonian University & University of Maryland) Distribution of orbits at prime and semi-prime times.
Show abstract
For a topological dynamical systems (T, X) and a fixed x ∈ X
we are interested
in the distribution of prime and semi-prime orbits, i.e.
{T^p(x)} where p runs over the primes and {T^{p1p2} x} where p1,p2 are primes.
We are interested in systems for which the related sequences of
empirical measures
have a limit for every x in X (we then say that (T, X) satisfies a PNT
or SPNT respectively).
It turns out that there are not so many examples of such systems. Our
knowledge is especially
limited for systems which have some non-trivial chaotic behavior, for
example weak-mixing or
mixing systems. I will discuss some known results and some recent
progress. I will focus on
examples of smooth and weakly mixing systems which satisfy a PNT and
also on some mixing
systems which satisfy a PNT. Finally I will discuss the case of SPNT
for horocycle flows. |
16 XII | Maik Gröger (Jagiellonian University in Kraków) Continuity of Følner averages
Show abstract
The notion of generic/mean points goes back to the seminal work of
Krylov and Bogolyubov.
The first to investigate the question of what happens when all points
of a dynamical
system are generic for some invariant measure seem to be Dowker and
Lederer in 1964.
As it turns out, combining this property with other topological regularity
criteria yields measure-theoretic rigidity results of the dynamical system.
For example, minimality of the system implies its unique ergodicity in
this setting.
Another natural topological criterion in place of minimality is to assume that
the map, which assigns each point its invariant measure to which it is
generic, is continuous.
By several recent works by different authors, the following picture emerges for
abelian group actions in this setting: each point is generic for some
ergodic measure
and even stronger, each orbit closure is uniquely ergodic.
In my talk, I will show that this is no longer the case for general actions by
topological amenable groups, providing concrete counter-examples
involving the group of
all orientation preserving homeomorphisms on the unit interval as well
as the Lamplighter group.
Moreover, in the course of the talk I will elaborate on the recently
introduced notion
of weak mean equicontinuity.
This is joint work with G. Fuhrmann and T. Hauser. |
9 XII | Juliusz Banecki (Jagiellonian University in Kraków) Distortion in the group of circle homeomorphisms
Show abstract
The aim of this talk is to present some aspects of the
problem of the existence of distorted elements in groups of
transformations. In particular we focus on our recent paper joint with
Tomasz Szarek, constructively proving that rotations are distorted in
the group of piecewise–affine circle homeomorphisms.
|
25 XI | Philipp Kunde (Jagiellonian University in KrakĂłw) Â Anti-classification results for weakly mixing diffeomorphisms
Show abstract
Dating back to the foundational paper by John von Neumann, a fundamental theme in ergodic theory is the isomorphism problem to classify invertible measure-preserving transformations (MPT's) up to isomorphism. Starting from the late 1990s, so-called anti-classification results use concepts from descriptive set theory to show precisely that classification for ergodic MPT's is impossible in terms of computable invariants, even with a very inclusive understanding of "computability''.
%In a series of papers, Matthew Foreman, Daniel Rudolph and Benjamin Weiss have shown in a rigorous way that such a classification is impossible.In a landmark paper, M. Foreman, D. Rudolph and B. Weiss showed that the measure-isomorphism relation for ergodic MPT's is not a Borel set. Informally speaking, this result says that determining isomorphism between ergodic transformations is inaccessible to countable methods that use countable amount of information. Recently, this anti-classification result has been generalized to ergodic diffeomorphisms of compact surfaces and other equivalence relations like Kakutani equivalence.
In the search for classification or anti-classification results, we place increasingly more stringent conditions on the family of transformations being considered for classification. Bernoulli shifts, which can be viewed as the most random type of transformations, have the strongest type of classification, a complete Borel invariant. But what about classes of transformations that are more random than ergodic transformations, but less so than Bernoulli shifts, such as weakly mixing transformations, mixing transformations, and K-automorphisms?
In this talk we show how to extend anti-classification results in ergodic theory to the collection of weakly mixing systems. |
18 XI | Jędrzej Hodor (Jagiellonian University in Kraków) The dynamical zeta function and roots of toral endomorphism Show abstract
The dynamical zeta function of a dynamical system is defined as the
exponential power series of the sequence (a_n), where a_n is the
number of periodic points of period n (not necessarily minimal). We
consider a particular class of dynamical systems, namely, toral
endomorphisms, induced by integer matrices. We characterise pairs of
matrices inducing systems with the same dynamical zeta function. We
also study dynamical systems such that the number of periodic points
is equal to b_n, where b_n is a qth root of the number of periodic
points of a given toral endomorphism. Assuming that the characteristic
polynomial of a matrix inducing the endomorphism is irreducible, we
show that there exist such systems only if the degree of the root q is
equal to 2 and the polynomial is reciprocal. For tori of dimension at
most 4, we provide a full characterization of endomorphisms such that
a dynamical system like the above does exist. |
4 XI | Alba Málaga Sabogal (l’Université de Lorraine, Nancy – Saint Dié des Vosges) Diplotori - a family of polyhedral flat tori Show abstract
A two-dimensional flat torus is often presented as a
quotient of the plane by a lattice of translations, or as the result
of gluing opposite sides of a parallelogram by translations. But
whether one can perform such gluings in Euclidean space to transform a
paper parallelogram into a polyhedral flat torus is not obvious.
Diplotori are a family of such polyhedral flat tori. Though they were
introduced in the late 1970s, many mathematicians are still unaware of
their existence, including dynamicists working on tori, and a
systematic study did not happen until the 2020s. In this talk, you
will fold your own diplotorus and we will show that diplotori realize
all flat tori. This is joint work with Pierre Arnoux and Samuel
Lelievre.
|
28 X | Jakub Tomaszewski (AGH University of Science and Technology) Dendrite maps are not that phenomenal Show abstract
It has been a general belief that entropy relates to the complexity of the behavior of a dynamical system. However, it has been shown in 2009 by Harańczyk and Kwietniak that exact maps on an interval attain lower entropy than pure mixing maps. This phenomenon has been extended to graph maps by Harańczyk, Kwietniak and Oprocha in 2014.
We studied an analogous question whether the same assertion holds for dendrites, and specifically, for Gehman dendrite. It is known by works of Špitalský that for exact maps on Gehman dendrite the infimum of entropies is zero and is not attainable. We will present the construction of a family of pure mixing maps on Gehman dendrite satisfying the same property.
|
21 X | Borys Kuca (University of Crete in Heraklion) Multiple ergodic averages along polynomials and joint ergodicity Show abstract
Furstenberg’s dynamical proof of the Szemerédi theorem
initiated a thorough examination of multiple ergodic averages, laying
the grounds for a new subfield within ergodic theory. Of the many
families of multiple ergodic averages, special attention has been paid
to averages of commuting transformations with polynomial iterates
since they play a central role in Bergelson and Leibman’s proof of the
polynomial Szemerédi theorem. Their norm convergence has been
established in a celebrated paper of Walsh, but for a long time,
little more has been known due to insurmountable obstacles encountered
by existing methods. Recently, there has been an outburst of research
activity which sheds new light on their limiting behaviour. I will
discuss a number of novel results, including new seminorm estimates
and limit formulas for these averages. Additionally, I will talk about
new criteria for joint ergodicity of general families of integer
sequences whose potential utility reaches far beyond polynomial
sequences. The talk will be based on two recent papers written jointly
with Nikos Frantzikinakis. |
14 X | Konrad Deka (UJ) BOREL COMPLEXITY OF SETS OF POINTS WITH PRESCRIBED AVERAGE BEHAVIOR Show abstract
We study the descriptive complexity of sets of points de fined by placing restrictions on statistical behaviour of their orbits in dynamical systems. An example is the set of generic points of a given invariant measure. We obtain general upper bounds on the complexity, and lower bounds under a certain kind of specification property. The talk is based on joint work with Steve Jackson, Dominik Kwietniak and Bill Mance. |
7 X | Artem Dudko (IM PAN) From invariant ergodic measures to indecomposable characters on full groups. Show abstract
Given a measure-preserving group action $(\mu, X, G)$ one can associate to it a character (positive-definite conjugacy invariant function) on $G$ by
\begin{align*}
\chi(g)=\mu(\{x \in X: g x=x\}), g \in G .
\end{align*}
Anatoly Vershik suggested that for a "sufficiently rich" simple group $G$ every indecomposable character (extreme point in the space of characters) on $G$ can be obtained by formula (1)
from some ergodic measure-preserving action of $G$.
Given a Cantor minimal system one can associate to it two important groups of actions: the topological full group of the system and the approximately finite group of the related Bratteli diagram.
In my talk I will explain the correspondence (1) for these groups and outline the proof of a generalization of Vershik's conjecture for them. The talk is based on an ongoing joint work with Konstantin Medynets.
|
27 V | Michael Baake (Universität Bielefeld) Spectral aspects of aperiodic dynamical systems Show abstract The spectral structure of aperiodic tilings and point sets
is reviewed, with some emphasis on pure point spectra and
the projection method. In contrast, singular continuous
spectra can be detected via exact renormalisation techniques,
as will be demonstrated with a planar example. Finally, we
will discuss the visible lattice points related dynamical
systems of number-theoretic origin, with focus on examples
with a two-dimensional shift action.
|
13 V | Davide Ravotti (University of Vienna) Large hyperbolic circles Show abstract The projections of large circles in R^2 onto the standard torus T^2 become equidistributed as the radius of the circles goes to infinity. In this talk, we consider the analogous problem in the hyperbolic setting; more precisely, for any compact hyperbolic surface, we provide a precise asymptotic expansion of the equidistribution rate of arbitrary circle arcs of large radius. The method we use is inspired by the works of Ratner on quantitative mixing properties of the geodesic flow and of Burger.
Furthermore, we discuss related distributional limit theorems and we give an explicit bound on the error term in the corresponding hyperbolic lattice counting problem (albeit weaker than the known estimates, which have been proved by Selberg and others using number theoretical methods).
This is a joint work with E. Corso. |
6 V | Michal Doucha (Institute of Mathematics of the Czech Academy of Sciences) Strong topological Rohlin property and symbolic dynamics on
countable groups Show abstract Following Hochman, say that a countable group G has the
strong topological Rohlin property (STRP) if it admits a continuous
action on the Cantor space whose conjugacy class is comeager (in an
appropriate topology). It is a well-known result, originally proved by
Kechris and Rosendal and then re-proved by different methods by Akin,
Glasner and Weiss, that there is a generic homeomorphism on the Cantor
space - or in other words, that the group of integers has the STRP. It
was later proved by Hochman that Z^d, for d>1, does not have the STRP,
and by Kwiatkowska that free groups on finitely many generators do
have the STRP.
We show that a countable group G has the STRP if and only if for any
finite set A with at least two elements, in the space of all closed
subshifts of A^G equipped with the Vietoris topology the isolated
points are dense. The latter can be more conveniently restated in the
language of SFTs, which will be done during the talk. Some
applications will be presented, including a new proof of the STRP for
Z. |
6 V | Tristan Bice (Institute of Mathematics of the Czech Academy of Sciences) Étale Groupoids and their C*-Algebras Show abstract We give a general introduction to C*-algebras with a
particular emphasis on those arising from étale groupoids. These
include C*-algebras arising from topological dynamical systems and
various other combinatorial objects like directed graphs. Indeed,
étale groupoids provide a natural lens through which to examine
various combinatorial/dynamical properties and their C*-algebraic
counterparts (e.g. minimality vs simplicity). Time permitting we will
also outline our recent noncommutative extension of the classic
Gelfand duality which unifies classic work of Dauns and Hofmann on
C*-bundles with the more recent Weyl groupoid construction of Kumjian
and Renault. |
29 IV | Tanja Schindler (University of Vienna) Almost sure asymptotic behaviour of Birkhoff sums for infinite measure-preserving dynamical systems
in autonomous systems [ONLINE MEETING]
Show abstract We are interested in the limit behaviour of Birkhoff sums over
an infinite sigma-finite measure space. If the observable is integrable
then – by a classical theorem by Aaronson – there exists no sequence of
real numbers such that the Birkhoff sum normed by this sequence
converges almost surely to 1. Under strong mixing conditions on the
underlying system we prove a generalized strong law of large numbers for
integrable observables using a truncated sum. We will see how this
truncation works, how it is related to trimming in a finite system.
For f not integrable we give conditions on f such that the Birkhoff sum
normed by a sequence of real numbers converges almost surely to 1. This
is joint work with Claudio Bonanno.
|
22 IV | Wacław Marzantowicz (UAM Poznań) Topological estimates of the number of vertices of minimal triangulation [ONLINE MEETING]
Show abstract From the beginning of the algebraic topology, then also
called the combinatorial topology, i.e. from the beginning of the 20th
century, its basic object is the simplicial complex. The
representation of a given topological space $X$ as a simplicial
complex (i.e. a homeomorphism with it) is called triangulation. The
name comes from the fact that when space X is a two-dimensional
surface, triangulation means representing it as the union of adjacent
triangles with edges meeting at the vertices. In the case of higher
dimensions, the basic cells are the "i" - dimensional simplices. One
of the natural questions is to find a triangulation with the minimum
number of vertices, respectively of all simplexes (or estimate these
numbers). This lecture will be devoted to this problem. We will
present a new method based on the notion of covering type estimating
from below the number of vertices by the weighted length of the
elements in the cohomology ring $ H^*(X) $, or the weighted
Lusternik-Schirelmann category theory. As a consequence, we got not
only a unified method of proof of estimates of the number of vertices
of the minimal triangulations derived originally by ad hock
combinatorial methods, but also sharper estimates, or estimates for
the families of manifolds not studied earlier. |
8 IV | Magdalena Foryś-Krawiec (AGH University of Science and Technology) Dendrites and measures with discrete spectrum
Show abstract Dendrites and measures with discrete spectrum
Möbius disjointness conjecture proposed by Sarnak in 2009 ([2]) states that Möbius function is linearly disjoint from any dynamical system with zero dynamical entropy. The conjecture was confirmed on various one-dimensional spaces, such as interval, circle, topological graphs and some dendrites. It is also known that if all invariant measures have discrete spectrum, then the conjecture holds.
In the talk we focus on the following question stated in [1]:
Which one-dimensional continua $X$ have the property that every invariant measure of $(X, f)$ has discrete spectrum, assuming $f$ is a zero-entropy map?
In particular we focus on dendrites with countable closure of the set of endpoints. We show that for such dendrites every recurrent point is minimal, which is the generalization of the property of zero-entropy interval maps. Then we prove that all invariant measures of zero-entropy maps of such dendrites have discrete spectrum, which confirms the Möbius disjointness conjecture on those spaces. Those results almost completely characterize dendrites for which all invariant measures of zero-entropy maps have discrete spectrum, leaving the case of dendrites with endpoint set countable with uncountable closure unsolved.
All results presented during the talk are obtained as a joint work with J. Hantáková, J. Kupka, P. Oprocha and S. Roth.
REFERENCES
[1] J. Li, P. Oprocha, G. Zhang, Quasi-graphs, zero entropy and measures with discrete spectrum Nonlinear. (2022) 35 no. 3, 1360-1379,
[2] P. Sarnak, Three lectures on the Mobius function randomness and dynamics, https://www.math.ias.edu/files/wam/2011/PSMobius.pdf |
1 IV | Roman Srzednicki (Jagiellonian University in Kraków) On determining the homological Conley index of Poincare maps
in autonomous systems[ONLINE MEETING]
Show abstract We consider a continuous-time dynamical system with a section. The associated
Poincare map is defined as the first-return map to the section. That
map provides an important information on the system, for example its periodic and
fixed points correspond to periodic trajectories of the system. The existence
of such points can detected by the homological Conley index, a topological
invariant of the map. In the talk we present a theorem on determining the
homological Conley index even if there is no information on the values of the
Poincare map or its approximations, but a suitable information on some
singular cycles for an index pair with respect to a small-step discretization
of the system is provided.
The talk is based on the preprint arXiv2106.14293 |
25 III | Yash Lodha (University of Vienna) Some new constructions in the theory of left orderable groups
[ONLINE MEETING]
Show abstract I will define two new constructions of finitely generated simple left orderable groups (in recent joint work with Hyde and Rivas). Among these examples are the first examples of finitely generated simple left orderable groups that admit a minimal action by homeomorphisms on the torus, and the first family that admits such an action on the circle. I shall also present examples of finitely generated simple left orderable groups that are uniformly simple (these were constructed by me with Hyde in 2019). And present new examples that, somewhat surprisingly, have infinite commutator width. Finally, I will present some new results around the second bounded cohomology of these groups (joint with Fournier-Facio). |
18 III | Sohail Farhangi (Ohio State University) Enhancements of van der Corput's Difference Theorem and
connections to the ergodic hierarchy of mixing.
[ONLINE MEETING]
Show abstract We will examine three commonly used variants of van der
Corput's Difference Theorem (vdCDT) in Hilbert spaces and show that
they are associated with the notions of weak mixing, strong mixing,
and Bernoullicity. We will then use this association to derive 2 new
vdCDTs corresponding to ergodicity and mild mixing. We remark that
our methods naturally yield vdCDTs for a class of unbounded sequences
of vectors. We will then obtain an application to recurrence in
measure preserving systems by giving a partial answer to a question of
Frantzikinakis. If time permits, we will also discuss analogues of
these vdCDTs in the context of uniform distribution and the classes of
"mixing distributions" that they produce. [pdf] |
11 III | Adam Kanigowski (University of Maryland) Ergodic and statistical properties of smooth systems
[ONLINE MEETING]
Show abstract We will discuss some classical ergodic (Bernoulli, K-property, positive entropy...) and statistical (limit theorems, quantitative mixing...) properties of smooth dynamical systems. We will discuss their flexibility (i.e. non-trivial examples of systems which satisfy some but not all of them) and rigidity (i.e. some properties imply other). We will mostly focus on two results: 1) exponential mixing implies Bernoulli 2) existence of zero entropy systems satisfying a central limit theorem.
|
21 I | Agnieszka Zelerowicz (University of Maryland) Emergence for $C^{1+\alpha}$ diffeomorphisms with nonzero
Lyapunov exponents[ONLINE MEETING]
Show abstract In their recent paper, S. Kiriki, Y. Nakano, and T. Soma
introduced a concept of pointwise emergence to measure the complexity
of irregular orbits. In our joint work with Yushi Nakano we consider
the set of points with high pointwise emergence for topologically
mixing subshifts of finite type. We show that this set has full
topological entropy, full Hausdorff dimension, and full topological
pressure for any H\"older continuous potential. Furthermore, we show
that this set belongs to a certain class of sets with large
intersection property. In my most recent paper I consider the set of
points with high pointwise emergence for $C^{1+\alpha}$
diffeomorphisms preserving a hyperbolic measure. I find a lower bound
on the Hausdorff dimension of this set in terms of unstable Hausdorff
dimension of the hyperbolic measure. If the measure is an SRB, I prove
that the set of points with high emergence has full Hausdorff
dimension.
|
14 I | Jakub Konieczny (Sorbonne Université) Finitely-valued generalised polynomials
[ONLINE MEETING]
Show abstract Generalised polynomials are expressions constructed from
polynomials with the use of the floor function, addition and
multiplication, such as [√2n [√3n2] + √6n + 1/2]. Despite superficial
similarity, generalised polynomials exhibit many phenomena which are
impossible for ordinary polynomials. In particular, there exist
generalised polynomial sequences which take only finitely many values
but are not constant. This is the case, for instance, for Sturmian
sequences.
In my talk, I will discuss finitely-valued generalised polynomial
sequences from the perspective of combinatorics on words. The talk
will include a survey of existing results on generalised polynomials,
adapted to the current context, as well as several new results
obtained in joint works with Boris Adamczewski and with Jakub
Byszewski.
|
17 XII | Elżbieta Krawczyk (Jagiellonian University in Kraków) Uncovering hidden automatic sequences
[ONLINE MEETING]
Show abstract It has been observed in several contexts that certain substitutive sequences defined using substitutions of non-constant length could in fact also be obtained from substitutions of constant length. While it is easy to construct such examples artificially, they also occur naturally, and the corresponding constant-length substitution is often by no means obvious. A particularly striking example is the Lysënok morphism related to the presentation of the first Grigorchuk group. In the opposite direction, a problem of showing that a given substitutive sequence is not automatic has also appeared in several contexts, e.g. in the study of gaps between factors in the famous Thue–Morse sequence or in the mathematical description of the drawing of the classical Indian kolam. The problem of how to recognize that a substitutive sequence is automatic has been raised recently by Allouche, Dekking and Queffélec. In this talk we will give a simple complete characterisation of automaticity of uniformly recurrent (minimal) substitutive sequences. This is joint work with Clemens Müllner. |
10 XII | Pierre-Antoine Guihéneuf (Sorbonne Université) Two examples of systems with historic behaviour
[ONLINE MEETING]
Show abstract A system is said to have historic behaviour if there is a
positive Lebesgue measure set of points having non convergent Birkhoff
averages. The question of knowing whether systems with historic
behaviour are abundant in some families of dynamics has recently
regained attention, with the recent works of Kiriki and Soma, and
Berger's definition of (local) emergence, which measures how big is the
set of accumulation points of Birkhoff averages.
In this talk, I will present two examples of systems with historic
behaviour.
The first one, obtained with Guarino and Santiago, is a modification of
Bowen's eye example in which the set of points with historic behaviour
is of positive Lebesgue measure but nowhere dense.
The second one, in collaboration with Andersson, is the study of
reparametrized linear flows of the two torus with two fixed points; we
obtain some Diophantine conditions on the flow's parameters under which
the system has/has not historic behaviour. |
3 XII | Michał Lemańczyk (University of Warsaw) Topological pressure of convolution systems with application to B-free systems
[ONLINE MEETING]
Show abstract I will introduce the notion of a convolution system and show formulas
for the topological pressure in this setting. As an application, I
will give a plain formula for the topological pressure for the
hereditary closure of any B-free system (for an arbitrary continuous
potential). The talk will be based on joint paper with Joanna
Kułaga-Przymus. |
26 XI | Maciej Capiński (AGH University of Science and Technology) Persistence of normally hyperbolic invariant manifolds in the
absence of rate conditions Show abstract Normally hyperbolic invariant manifold theory deals with
persistence results of invariant structures under perturbations. In
the talk we will discuss a topological reformulation of the theory,
which allows us to extend the results to an earlier unattainable
setting. We consider perturbations of normally hyperbolic invariant
manifolds, under which they can lose their hyperbolic properties. We
show that if the perturbed map which drives the dynamical system
preserves the properties of topological expansion and contraction,
then the manifold is perturbed to an invariant set. The main feature
is that our results do not require the `rate conditions' to hold after
the perturbation. In this case the manifold can be perturbed to an
invariant set, which is not a topological manifold. |
19 XI | Dawid Bucki (Jagiellonian University in Kraków) Stability and shadowing of tree-shifts of finite type Show abstract Tree-shifts were introduced by Aubrun and Béal as a step-in between
one-dimensional shifts and multi-dimensional shifts defined over the
d-dimensional lattice. They are less complicated than
multi-dimensional shifts
but still enrich the dynamics of the classical one-dimensional case.
At the same time they preserve a lot of important properties of
one-dimensional shifts, which often fail for multi-dimensional case.
During the talk I will introduce the notions of tree-shifts and
generalise definitions from symbolic dynamics, focusing on tree-shifts
of finite type. I will present attempts of generalisations of some
theorems concerning one-dimensional shifts. In particular I will show
relations between being of finite type, shadowing, openness and
stability. |
12 XI | Martha Łącka Dominik Kwietniak (Jagiellonian University in Kraków) The rank function is lower semi-continuous with respect to the Feldman-Katok topology Show abstract During the talk we will remind the definition and basic properties of the Feldman-Katok topology defined on the space of probability invariant (for a given map of a compact metric space) measures. Further, we will show that the rank function is lower semi-continuous with respect to this topology.
As a corollary we will get that all royal measures, which were introduced by Gorodetsky, Ilyashenko, Kleptsyn and Nalski, have rank one.
The talk is based on the joint work with Dominik Kwietniak. |
5 XI | Philipp Kunde (University of Hamburg) Anti-classification results for the Kakutani equivalence relation
[ONLINE MEETING]
Show abstract Dating back to the foundational paper by John von Neumann, a fundamental theme in
ergodic theory is the isomorphism problem to classify invertible measure-preserving transforma-
tions (MPT's) up to isomorphism. In a series of papers, Matthew Foreman, Daniel Rudolph and
Benjamin Weiss have shown in a rigorous way that such a classication is impossible. Besides
isomorphism, Kakutani equivalence is the best known and most natural equivalence relation on
ergodic MPT's for which the classication problem can be considered. In joint work with Mar-
lies Gerber we prove that the Kakutani equivalence relation of ergodic MPT's is not a Borel set.
This shows in a precise way that the problem of classifying such transformations up to Kakutani
equivalence is also intractable. |
22 X | Azur Đonlagić (Jagiellonian University in Kraków) An Algebraic Reinterpretation of Symbolic Dynamics Show abstract The basic form of Stone duality tells us that a certain subcategory of
topological spaces (zero-dimensional compact Hausdorff spaces) is
opposite to the category of Boolean rings. We sketch this
correspondence and explain how it can be used to provide algebraic
duals to categories of symbolic dynamical systems. In the remainder of
the talk, we show what some objects commonly studied in symbolic
dynamics look like after this dualization. |
15 X | Dominik Kwietniak (Jagiellonian University in Kraków) Borel complexity of sets of generic points
[ONLINE MEETING] Show abstract I will survey what we know, and what we do not know about
possible Borel complexities of sets of generic points in topological
dynamical systems. |
28 V | Jernej Činč (AGH University of Science and Technology & University of Ostrava) [ONLINE MEETING] Pseudo-arc in measurable dynamical systems
Show abstract The pseudo-arc is besides the arc the only planar continuum
(i.e. compact connected metric space) so that every of its proper
subcontinua is homeomorphic to itself (Hoehn and Oversteegen 2020).
Its first description appeared in the literature about a hundred years
ago and due to many of its remarkable properties it is an object of
interest in several branches of mathematics. There are results
indicating that the pseudo-arc appears as a generic continuum in very
general settings. For instance, Bing has proven that in any manifold M
of dimension at least 2, the set of subcontinua homeomorphic to the
pseudo-arc is a dense residual subset of the set of all subcontinua of
M (equipped with the Vietoris topology). In this talk I will present a
result which reveals that pseudo-arc is a generic object also in a
certain measure theoretical setting; namely, I will show that the
inverse limit of the generic Lebesgue measure preserving interval map
is the pseudo-arc. Building on this result I will construct a family
of attractors with attracting sets being the pseudo-arc with several
interesting topological and measure-theoretical properties.
|
21 V | Manuel Stadlbauer (Universidade Federal do Rio de Janeiro) [ONLINE MEETING] A logarithmic law for continued fractions with sequentially restricted entries Show abstract Non-stationary shift spaces are basic models of sequential dynamical system who were intensively studied in order to construct symbolic models for ergodic automorphism (Vershik) or in the context of the isomorphism problem of shift spaces (Krieger). Recently, the focus moved towards thermodynamic formalism and related questions. A fundamental tool of thermodynamic formalism, Ruelle's operator theorem, has no immediate generalization to the non-stationary setting as invariant functions intrinsically may not exist. However, it is possible to establish geometric ergodicity for a family of ratios of operators.
This approach has applications to a classical problem in metric number theory. For a sequence $(\alpha_n)$ converging to $\infty$, set
\[X_\alpha := \left\{ x = \frac{1}{x_1 + \frac{1}{x_2 + \cdots} } : x_n \in \mathbb N, x_n \geq \alpha_n \hbox{ for all } n \right\}.\]
That is, $X$ is the subset of $[0,1]$ such that the $n$-th entry of the continued fraction expansion of each element is bigger than or equal to $\alpha_n$. In this setting, for $\alpha_n \gg n^{1+\epsilon}$, the geometric ergodicity implies a law of the iterated logarithm for square integrable functions from geometric ergodicity. If, in addition, $(\alpha_n)$ does not behave too wildly, the reference measure is absolutely contiunous with respect to the Hausdorff measure (and the Hausdorff dimension is $1/2$). \\ |
14 V | Alexandre Trilles (Jagiellonian University) [ONLINE MEETING] Topological stability of iterated function systems
Show abstract We study Iterated Function Systems (IFS) with compact parameter space.
We show that the compactness of the phase space permits us to obtain a natural metric
on the space of IFS which extends $C^0$-topology to the space of IFS.
We then use this metric to define topological stability and to prove that
in this context the classical results saying that shadowing property is a necessary
condition for topological stability and that shadowing property together
with expansiveness are sufficient conditions.
For a proof of these statements, in fact we use a stronger type of shadowing property
which we show to be different than the standard one.
This is joint work with Alexander Arbieto. |
7 V | Elżbieta Krawczyk (Jagiellonian University) [ONLINE MEETING] Automatic sequences in automatic systems Show abstract A sequence is called automatic if it can be obtained as a coding of a fixed point of a substitution of constant length. We study the class of automatic systems, that is systems which arise as orbit closures of automatic sequences.
Since there are only countably many automatic sequences, and since automatic systems usually have uncountably many points, it is interesting to study the combinatorial structure of the subset of an automatic system which comprises all of its points which are automatic. We give a dynamical description of this set, which is analogous to the one obtained by Holton and Zamboni for minimal substitutive systems. In particular, we show that automatic sequences in an infinite minimal automatic system correspond to the rationals in the ring of k-adic integers, the maximal connected equicontinuous factor of the system.
As an application, we show that any minimal substitutive system which factors onto an infinite k-automatic system is itself k-automatic. We also state several conjectures which generalise our results to arbitrary substitutive systems, and explain their relation to Cobham-type results (connected with the ones obtained by Durand in 2011). |
28 IV | Thiago Raszeja (University of São Paulo (USP), Brazil) [ONLINE MEETING] Thermodynamic formalism on generalized countable Markov shifts Show abstract Given a 0-1 infinite matrix $A$, R. Exel and M. Laca have
introduced a kind of \textit{generalized countable Markov shift}
(GCMS) $X_A=\Sigma_A \cup Y_A$, which is a locally compact (in many
important cases compact) version of $\Sigma_A$, the standard countable
Markov shift. The elements of $Y_A$ are finite words, possibly
including multiplicities. We develop the thermodynamic formalism for
GCMS, where we introduced the notion of conformal measure on $X_A$,
and we explored its connections with the usual formalism on
$\Sigma_A$. Among the results, we highlight the finding of new
conformal measures that are not detected by the thermodynamic
formalism on $\Sigma_A$ and new phase transition phenomena: for a wide
class of GCMS and potentials, we determined regions for the inverse of
the temperature $\beta$, where we absence\existence of these new
conformal probabilities, living on $Y_A$. The Gurevich entropy $h_G$
plays a fundamental role in determining these regions since the
critical value for gauge potentials is $h_G$ when finite. We also have
phase transition results for $h_G = \infty$, including the full shift.
In addition, for the eigenmeasures of Ruelle's transformation, we
discovered a length-type phase transition in the renewal shift: the
existence of a critical value for $\beta$ where the measure passes
from living on $\Sigma_A$ to live on $Y_A$. We showed that the notion
of pressure introduced by M. Denker and M. Yuri for Iterated Function
Systems (IFS) is a natural definition of pressure for $X_A$, and it
coincides with the Gurevich pressure for GCMS basically for the same
generality on which the thermodynamic formalism is developed for the
standard countable Markov shifts and potentials.
Joint work with R. Bissacot (University of São Paulo (USP), Brazil),
R. Exel (Federal University of Santa Catarina (UFSC), Brazil), and R.
Frausino (University of Wollongong (UOW), Australia). |
23 IV | Anna Gierzkiewicz-Pieniążek (University of Agriculture in Krakow) [ONLINE MEETING] Sharkovskii's Theorem for multi-dimensional maps with an
attracting periodic orbit
Show abstract In a joint work with Piotr Zgliczyński, we show that the methods used
by Burns and Hasselblatt to prove Sharkovskii's Theorem can be
generalized to the case of higher-dimensional maps with an attracting
periodic orbit.
As an application, we prove the existence of $n$-periodic orbits for
almost all $n\in\mathbb{N}$ in the R\"ossler system with an attracting
periodic orbit, for two sets of parameters. A part of the proof is
computer-assisted. |
16 IV | Habibeh Pourmand (Jagiellonian University) [ONLINE MEETING] The mean orbital pseudo-metric in topological dynamics Show abstract We study properties and applications of the mean orbital pseudo-metric
$\bar{\rho}$ on a topological dynamical system $(X,T)$ defined by
\[
\bar{\rho}(x,y)= \limsup_{n\to \infty} \min_{\sigma \in S_n}
\frac{1}{n}\sum_{k=0}^{n-1} d(T^k(x), T^{\sigma(k)}(y)),
\]
where $x,y\in X$, $d$ is a metric for $X$, and $S_n$ is the
permutation group of the set $\{0,1,\ldots,n-1\}$.
Writing $\hat{\omega}(x)$ for the set of $T$-invariant measure
generated by the orbit of a point $x\in X$, we prove that the function
$x\mapsto \hat{\omega}(x)$ is $\bar{\rho}$ uniformly continuous. This
allows us to characterise equicontinuity with respect to the mean
orbital pseudo-metric ($\bar{\rho}$-equicontinuity) and connect it to
such notions as uniform or continuously pointwise ergodic
systems studied recently by Downarowicz and Weiss.
This is joint work with F. Cai, D. Kwietniak, and J. Li.
|
9 IV | Hector Barge (Universidad Politécnica de Madrid) [ONLINE MEETING] The realization problem of homeomorphisms in $R^3$ for toroidal sets Show abstract Given a compact subset $K$ of $R^3$, one may ask whether it can be
realized as a (Lyapunov stable) attractor of a homeomorphism of $R^3$.
In this generality the problem seems extremely complicated. We focus
on a class of compacta $K$ called toroidal, which are those that have a
neighbourhood basis comprised of solid tori. For instance, generalized
solenoids and some wild knots are toroidal. Using techniques from
geometric topology we give obstructions for a toroidal set to be
realized as an attractor and show different methods to construct
plenty of examples of toroidal sets that cannot be attractors in $R^3$.
These results were obtained in collaboration with J.J. Sánchez-Gabites. [pdf] |
26 III | Aurelia Dymek [ONLINE MEETING] Topological dynamics of multidimensional $\mathscr{B}$-free systems: proximality, minimality and the maximal equicontinuous factor
Show abstract For $\mathscr{B}\subset \mathbb{N}$, let $\mathcal{M}_{\mathscr{B}}:=\bigcup_{b\in\mathscr{B}}b\mathbb{Z}$ and $\mathcal{F}_{\mathscr{B}}:=\mathbb{Z}\setminus\mathcal{M}_{\mathscr{B}}$ be the corresponding set of multiples and the $\mathscr{B}$-free set. The subshift $(X_\eta,\sigma)$, where $X_\eta\subset \{0,1\}^{\mathbb{Z}}$ is the orbit closure of $\eta=\mathbf{1}_{\mathcal{F}_{\mathscr{B}}}$ is called the $\mathscr{B}$-free system. Motivated by the special case of the square-free system (interesting from the number-theoretic viewpoint), where $\eta=\boldsymbol{\mu}^2$ (and $\boldsymbol{\mu}$ is the M\"obius function), Sarnak suggested to study the properties of $(X_\eta,\sigma)$. In particular, he showed that the square-free subshift is proximal, with the unique minimal subset being a singleton. There are two possible natural counterparts of $\mathcal{M}_{\mathscr{B}}$ in the multidimansional setting: countable unions of lattices in $\mathbb{Z}^m$ or countable unions of ideals in the ring of integers of algebraic number fields (see, e.g., works by Cellarosi, Vinogradov, Baake and Huck). I will concentrate on the latter approach and show that each mutlidimensional $\mathscr{B}$-free system has a~unique minimal subset and describe its structure. I will also discuss minimality, proximality and describe the maximal equicontinuos factor. The talk is based on a part of my doctoral dissertation. |
19 III | Maik Gröger [ONLINE MEETING] Group actions with discrete spectrum and their amorphic complexity
Show abstract Amorphic complexity, originally introduced for integer actions, is a
topological invariant which measures the complexity of dynamical
systems in the regime of zero entropy.
We will explain its definition for actions by locally compact
sigma-compact amenable groups on compact metric spaces.
Afterwards, we will illustrate some of its basic properties and show
why it is tailor-made to study strictly ergodic group actions with
discrete spectrum and continuous eigenfunctions.
This class of actions includes, in particular, Delone dynamical
systems related to regular model sets obtained via cut and project
schemes (CPS).
Finally, for this family of Delone dynamical systems we present sharp
upper bounds on amorphic complexity utilizing basic properties of the
corresponding CPS.
This is joint work with G. Fuhrmann, T. Jäger and D. Kwietniak. |
12 III | Jakub Konieczny [ONLINE MEETING] Quasicrystals from the point of view of additive combinatorics
Show abstract We show that some results in additive combinatorics can
be translated into corresponding results that are relevant to the
mathematical theory of quasicrystals. Specifically, we will use the
Freiman-Ruzsa theorem, characterising finite sets with bounded
doubling, to obtain an alternative proof of a characterisation of
Meyer sets, that is, relatively dense subsets of Euclidean spaces
whose difference sets are uniformly discrete.
Article
https://arxiv.org/abs/2103.02289
[pdf] |
5 III | Sascha Troscheit [ONLINE MEETING] A dimension theory approach to embeddings in random geometry Show abstract The continuum random tree and Brownian map are important
metric spaces in probability theory and represent the "typical" tree
and metric on the sphere, respectively. The Brownian map in particular
is linked to Liouville Quantum Gravity but the exact nature of the
correspondence is unknown.
In this talk I will explain a fairly dynamical construction of these
spaces and show how recent advances in the dimension theory of
self-similar sets can be used to shed light on general embedding
problems. In particular, I will show that the Assouad dimension of
these metric spaces is infinite and show how this restricts the nature
of embeddings. Time permitting, I will also indicate how the
construction of continuum trees may be used to analyse highly singular
functions such as the Weierstrass-type functions. |
22 I | Jan Boroński [ONLINE MEETING] Parametric families of attractors and inverse limits Show abstract In my talk I shall discuss some of my recent work on
parametric families of maps and their strange attractors on surfaces,
which employed inverse limit approach. They were focusing on computing
accessible rotation numbers (e.g. for reduced Arnold Standard Family
[1]), and building 1-dimensional models that are reductions of
2-dimensional dynamics in the presence of strong (mild) dissipation
[2]. The latter was inspired by recent results of Crovisier and Pujals
[3] (see also [4]).
References
[1] Boroński, J. P.; Činč, J.; Liu, X-C "Prime ends dynamics in
parametrised families of rotational attractors". J. Lond. Math. Soc.
(2) 102 (2020), no. 2, 557–579.
[2] Topological and Smooth Dynamics on Surfaces, Mathematisches
Forschungsinstitut Oberwolfach Report No. 27/2020, DOI:
10.4171/OWR/2020/27
[3] S. Crovisier, E. Pujals, "Strongly dissipative surface
diffeomorphisms", Commentarii Mathematici Helvetici 93 (2018),
377–400.
[4] S. Crovisier, E. Pujals, C, Tresser, "Mild dissipative
diffeomorphisms of the disk with zero entropy", arXiv 2020. |
8 I | Marcel Mroczek [ONLINE MEETING] The Besicovitch Metric on the Space of G -invariant Ergodic Measures Show abstract Given two sequences over a finite alphabet, one can measure the distance between them by looking how their asymptotic behaviours differ. This gives rise to dynamically generated Besicovitch pseudometric. I will talk about the generalisation of this concept to actions of countable amenable groups. I will show that it induces a metric on the space of ergodic measures invariant under the action, and that in the case of the shift space, entropy function is continuous with respect to this metric. As an application of these results, I will show that if the considered group is in addition residually finite, then uniquely ergodic measures are entropy dense in the set of totally ergodic measures. This is a joint work with Martha Łącka. |
11 XII | Mike Todd (St. Andrews) [ONLINE MEETING] Pressure on non-compact spaces Show abstract Thermodynamic formalism has a lot to say in the context of
sufficiently regular dynamical systems in compact spaces, for example
about the existence and uniqueness properties of equilibrium states,
and their characterisation as some derivative of the pressure
function. This talk considers non-compact settings, particularly the
case of countable Markov shifts. A first natural approach is to take
the completion of the space and hope that the boundary created doesn’t
interfere with too many thermodynamic properties. I’ll look at how
one might do this, some drawbacks, and how they can, in some cases, be
overcome. |
27 XI | Till Hausner (FSU Jena) [ONLINE MEETING] Entropy in the context of aperiodic order Show abstract In this talk we study different notions of entropy for
Delone sets of finite local complexity in the setting of (metrizable
and sigma-compact) locally compact Abelian groups (LCA groups).
For Delone sets of finite local complexity (FLC) in the euclidean
space it is well known that the patch counting entropy equals the
topological entropy of an associated shift system. We present an
example of a FLC Delone set in a LCA group for which the topological
entropy and the patch counting entropy are not equal.
It was suggested by J. Lagarias for FLC Delone sets in the euclidean
space that the patch counting entropy can always be computed as a
limit. We discuss why the Ornstein-Weiss lemma can not directly be
used in order to see this claim and present that the correspondence
between the topological and the patch counting entropy can be used in
order to show that the limit in the patch counting entropy formula
exists for compactly generated LCA groups. We present counterexamples
where the limit does not exist in the context of general LCA groups. |
20 XI | Paulo Varandas (UFBA/Porto) [ONLINE MEETING] Phase transitions and appearance of ghost measures Show abstract The thermodynamic formalism for transitive uniformly
hyperbolic dynamics is nowadays well understood and, among other
aspects, it is worth mentioning that regular potentials (meaning
Holder continuous) are so that the pressure function is differentiable
and admit unique equilibrium states. The situation changes drastically
in simple examples beyond uniform hyperbolicity, as the case of the
Manneville-Pomeau maps, where different kinds of phase transitions
appear due to the phenomenon of intermittency of an indifferent fixed
point. In this talk I will focus on this family and discuss a new
aspect of the phase transitions, namely the appearance of finitely
additive absolutely continuous invariant measures.In particular, the
second-order phase transition can be detected as a first-order phase
transition for an extended pressure function. This is part of an
ongoing work with A. Castro (UFBA) and L. Cioletti (UnB). |
13 XI | Katrin Gelfert [ONLINE MEETING] Heterodimensionality of skew-products with concave fiber maps Show abstract I will present some examples of skew-products with concave
interval fiber maps over a certain subshift. Here the subshift occurs
as the projection of those orbits that stay in a given neighborhood
and gives rise to a new type of symbolic space which is (essentially)
coded. The fiber maps have expanding and contracting regions. As a
consequence, the skew-product dynamics has pairs of horseshoes of
different type of hyperbolicity. In some cases, they dynamically
interact due to the superimposed effects of the (fiber) contraction
and expansion, leading to nonhyperbolic dynamics that is reflected on
the ergodic level (existence of nonhyperbolic ergodic measures). The
space of ergodic measures of the shift space is shown to be an
entropy-dense Poulsen simplex, ergodic measures lift canonically to
ergodic measures for the skew-product.
Such skew-products can be embedded in increasing entropy one-parameter
family of diffeomorphisms which stretch from a heterodimensional cycle
to a collision of homoclinic classes. I will discuss some ingredients
of associated bifurcation phenomena that involve a jump of the space
of ergodic measures and, in some cases, also of entropy. (Joint work
with L.J.Díaz and M.Rams) |
6 XI | Tomasz Downarowicz [ONLINE MEETING] Multiorder of countable groups Show abstract I will present the notion of a Multiorder of a countable group,
a particular case of an Invariant Random Order introduced by
John Kieffer in 1975.
I will discuss how multiorder is related to orbit equivalence to
Z-actions and I will prove that if the group is amenable then
each multiorder has the Følner property. If time permits, I will
also show how to construct a uniformly Følner multiorder of
entropy zero, using a tiling system. |
23 X | Anna Szczepanek [ONLINE MEETING] Quantum Dynamical Entropy of Unitary Operators in Finite-dimensional State Spaces Show abstract Quantum dynamical entropy quantifies the irreducible randomness of the sequences of outcomes generated by a repetitively measured quantum system that between each two consecutive measurements is subject to unitary evolution. For several classes of quantum measurements, we derive an efficient formula for dynamical entropy by establishing the limiting measure of the Markov chain generated by the system and evaluating the Blackwell integral entropy formula. We also discuss the class of chaotic unitaries, i.e., those with potential to generate maximally random sequences of outcomes. Employing the notion of complex Hadamard matrices, we give a necessary condition for chaoticity (expressed in terms of the operator’s trace and determinant), which in dimensions 2 and 3 is sufficient as well. |
9 X | Joanna Kułaga-Przymus (UMK Toruń) [ONLINE MEETING] Entropy rate of product of independent processes Show abstract The entropy of the product of stationary processes is related to
Furstenberg’s filtering problem. In its classical version one deals
with the sum $\mathbf{X}+\mathbf{Y}$, where $\mathbf{X}$ corresponds to the signal
and $\mathbf{Y}$ to the noise. In his seminal paper from 1967, Furstenberg
showed that under the natural assumption of the disjointness of
underlying dynamical systems, the information about $\mathbf{X}$ can be
retrieved from $\mathbf{X}+\mathbf{Y}$. Instead of the sum, we study the
product $\mathbf{X}\cdot\mathbf{Y}$. We give a formula for the entropy rate of
$\mathbf{X}\cdot\mathbf{Y}$ (relative to that of $\mathbf{Y}$, for $\mathbf{X}$ and
$\mathbf{Y}$ being independent). As a consequence, $\mathbf{X}$ cannot be
recovered from $\mathbf{X}\cdot\mathbf{Y}$ for a wide class of positive
entropy processes, including exchangeable processes, Markov chains and
weakly Bernoulli processes. Moreover, we answer some open problems on
the dynamics of $\mathscr{B}$-free systems (including the square-free
system given by the square of the Moebius function). The talk is based
on joint work with Michał Lemańczyk, see
https://arxiv.org/pdf/2004.07648.pdf |
2 X | Dominik Kwietniak [ONLINE MEETING] Dbar-approachability, entropy density and B-free shifts Show abstract We study which properties of shift spaces transfer to their Hausdorff
metric dbar-limits. In particular, we study shift spaces we call
dbar-approachable, which are Hausdorff metric dbar-limits of their own
k-step Markov approximations. We provide a topological
characterisation of chain mixing dbar-approachable shift spaces using
the dbar-shadowing property. This can be considered as an analogue for
Friedman and Ornstein's characterisation of Bernoulli processes. We
prove that many classical specification properties imply chain mixing
and dbar-approachability. It follows that there are tons of
interesting dbar-approachable shift spaces (mixing shifts of finite
type, or more generally mixing sofic shifts, or even more generally,
shift spaces with the specification or beta-shifts). In addition, we
construct minimal and proximal examples of dbar-approachable shift
spaces, thus proving dbar-approachability is a more general phenomenon
than specification. We also show that dbar-approachability and
chain-mixing imply dbar-stability, a property recently introduced by
Tim Austin in his study of Bernoulliness of equilibrium states. This
allows us to provide first examples of minimal or proximal dbar-stable
shift spaces, thus answering a question posed by Austin. Finally, we
show that the set of shift spaces with entropy-dense ergodic measures
is closed wrt dbar Hausdorff metric. Note that entropy-density of
ergodic measures is known to hold for many classes of shift spaces
with variants of the specification property, but our result show that
in these cases the entropy-density is a mere consequence of
entropy-density of mixing shifts of finite type and
dbar-approachability. Since we know there are examples of minimal or
proximal dbar-approachable shifts, we see that our technique yields
entropy-density for examples which were beyond the reach of methods
based on specification properties. Finally, we apply our technique to
hereditary closures of B-free shifts (a class including many
interesting B-free shifts). These shift spaces are not chain-mixing,
hence they are not dbar-approachable, but they are easily seen to be
approximated by naturally defined sequences of transitive sofic
shifts, and this implies entropy-density. This is a joint work with
Jakub Konieczny and Michal Kupsa. |
19 VI | Julien Melleray (Institut Camille Jordan, Université Lyon 1) [ONLINE MEETING] Characterizing sets of invariant probability measures of minimal homeomorphisms of the Cantor space Show abstract Given a set K of probability measures on a Cantor set X, one
can ask whether there exists a minimal homeomorphism (= all orbits are
dense) whose invariant probability measures are exactly the elements of
K. We say that K is a dynamical simplex if such a homeomorphism exists;
I will present a characterization of dynamical simplices, which is based
in large part on work of T. Ibarlucia and myself; and try to explain the
proof strategy, based on the notion of Kakutani-Rokhlin partitions. The
talk will be introductory in nature and not assume prior knowledge of
Cantor dynamics. |
12 VI | Jakub Konieczny (Einstein Institute of Mathematics & UJ) [ONLINE MEETING] Automatic multiplicative sequences Show abstract Automatic sequences - that is, sequences computable by
finite automata - give rise to one of the most basic models of
computation. As such, for any class of sequences it is natural to ask
which sequences in it are automatic. In particular, the question of
classifying automatic multiplicative sequences has attracted
considerable attention in recent years. In the completely
multiplicative case, such classification was obtained independently by
S. Li and O. Klurman and P. Kurlberg. The main topic of my talk will
be the resolution of the general case, obtained in a recent preprint
with M. Lemańczyk and C. Müllner. |
5 VI | Gabriel Fuhrmann (Imperial College London) [ONLINE MEETING] Some recent progress on tameness in minimal systems Show abstract Tameness is a notion which - very roughly speaking - refers to the
absence of topological complexity of a dynamical system. The last
decades saw an increased interest in tame systems revealing their
connections to other areas of mathematics like Banach spaces,
substitutions and tilings or even model theory and logic. In this
talk, we will assume a dynamical systems perspective.
Huang showed that, given a minimal system, tameness implies almost
automorphy [1]. That is, after discarding a meagre set of points, the
factor map of a tame minimal system to its maximal equicontinuous
factor is one-to-one. This structural theorem got recently extended to
actions of general groups by Glasner [2].
In a collaboration with Glasner, Jäger and Oertel, we could further
improve this result by showing that tame minimal systems are actually
regularly almost automorphic [3]. In this talk, we will show a closely
related statement which, however, is way easier to prove: every
symbolic almost automorphic extension of an irrational rotation whose
non-invertible fibres form a Cantor set is non-tame. We will further
discuss some related results from a collaboration with Kwietniak [4].
Finally, if time allows, we will come to discuss tameness in
substitutive subshifts and more general classes of Toeplitz flows [5].
All (non-standard) notions will be introduced in the talk. In other
words: we prioritise accessibility over the number of results to be
discussed.
[1] W. Huang, Tame systems and scrambled pairs under an abelian group
action, Ergodic Theory Dynam. Systems 26 (2006), 1549-1567.
[2] E. Glasner, The structure of tame minimal dynamical systems for
general groups, Invent. Math. 211 (2018), 213-244.
[3] G. Fuhrmann, E. Glasner, T. Jäger, C. Oertel, Irregular model sets
and tame dynamics, arXiv:1811.06283, (2018), 1-22.
[4] G. Fuhrmann, D. Kwietniak, On tameness of almost automorphic
dynamical systems for general groups, Bull. Lon. Math. Soc. 52 (2020),
24-42.
[5] G. Fuhrmann, J. Kellendonk, R. Yassawi, work in progress. |
29 V | Tobias Oertel-Jäger [ONLINE MEETING] Topological Dynamics of Irregular Model Sets Show abstract Model sets have been introduced by Yves Meyer in 1972. As
the underlying cut and project schemes present a quite general method
to construct aperiodic point-sets with long-range order, they are
often studied in the theory of mathematical quasicrystals. At the same
time, they present an interesting class of examples in the context of
topological dynamics.
In this talk, we will concentrate on the dynamics of so-called
irregular model sets, whose dynamics are generally more complicated
and less understood than that of regular models (like the Fibonacci
quasicrystal). We show that the Delone dynamical systems associated to
irregular model sets often show positive entropy, but the construction
also allows for uniquely ergodic zero entropy examples. However,
irregular models sets cannot be tame, which provides a lower bound for
the complexity of their dynamics. |
22 V | Michał Misiurewicz [ONLINE MEETING] Flexibility of entropies for piecewise expanding unimodal maps Show abstract We investigate the flexibility of the entropy (topological and metric)
for the class of piecewise expanding unimodal maps. We show that the
only restrictions for the values of the topological and metric entropies
in this class are that both are positive, the topological entropy is at
most log 2, and by the Variational Principle, the metric entropy is not
larger than the topological entropy.
In order to have a better control on the metric entropy, we work mainly
with topologically mixing piecewise expanding skew tent maps, for which
there are only two different slopes. For those maps, there is an
additional restriction that the topological entropy is larger than
½ log 2.
We also make the interesting observation that for skew tent maps the sum
of reciprocals of derivatives of all iterates of the map at the critical
value is zero. It is a generalization and a different interpretation of
the Milnor-Thurston formula connecting the topological entropy and the
kneading determinant for unimodal maps. |
15 V | Samuel Roth [ONLINE MEETING] Special Alpha-Limit Sets on the Interval Show abstract For a noninvertible dynamical system $(X,f)$ a point $x$ can have many
possible “pasts.” Special alpha-limit sets were defined to contain all
the limit points of all those backward orbits, and it turns out that for
interval maps they have many good properties. For example, a point
belongs to its own special alpha-limit set (this is like “backward
recurrence”) if and only if it is in the attracting center of the interval
map [Hero, 1992].
One of the last papers by Sergei Kolyada proposes several conjectures
and open problems about topological properties of special-alpha limit
sets. This talk will address those problems. The project is joint work
with Jana Hantáková. |
8 V | Dominik Kwietniak [ONLINE MEETING] Entropy, $\overline{f}$, and Abramov's formula for the entropy of induced transformations Show abstract Recall that an infinite sequence over a finite alphabet $A$ is
quasi-regular, if it is a generic point for a (non-necessarily
ergodic) shift-invariant measure. Given a quasi-regular point $x$ in the
full shift over $A$ we write $h(x)$ for the Kolmogorov-Sinai entropy of
the shift invariant Borel probability measure generated by $x$. We prove
that $h$ is uniformly continuous on the set of all quasi-regular points
endowed with the $\overline{f}$ (pseudo)distance. We also give an alternative
proof of Abramov's formula for the entropy of induced transformations.
This is a joint work with Tomasz Downarowicz and Martha Łącka. |
24 IV | Olga Lukina (University of Vienna) [ONLINE MEETING] Stabilizers in group Cantor actions and measures Show abstract Given a countable group $G$ acting on a Cantor set $X$ by transformations preserving a probability measure, the action is essentially free if the set of points with trivial stabilizers has full measure. On the other hand, there are many examples of group actions, where every point has a non-trivial stabilizer. In this talk, we generalize the notion of an essentially free action to such actions, using the notion of holonomy. For equicontinuous actions of countable groups on Cantor sets, we answer the following question: under what conditions there exists a subgroup $H$ of $G$, such that the stabilizers of almost all points in $X$ are conjugate to $H$? These conditions are that the action is locally quasi-analytic and that the action is uniformly non-constant. The notion of a locally quasi-analytic action was previously used by the speaker in the joint works with Hurder to classify equicontinuous actions on Cantor sets. The notion of a uniformly non-constant action is new and was introduced in this work. This is joint work with Maik Groeger. |
17 IV | Nishant Chandgotia (Hebrew University of Jerusalem) [ONLINE MEETING] Predictive sets Show abstract A subset of the integers $P$ is called predictive if for all zero-entropy processes $X_i$; $i\in\mathbb{Z}$, $X_0$ can be determined by $X_i$; $i\in P$. The classical formula for entropy shows that the set of natural numbers forms a predictive set. In joint work with Benjamin Weiss, we will explore some necessary and some sufficient conditions for a set to be predictive. These sets are related to Riesz sets (as defined by Y. Meyer) which arise in the study of singular measures. This and several other questions will be discussed during the talk. [pdf] |
3 IV | Dominik Kwietniak [ONLINE MEETING] Topological models of zero entropy loosely Bernoulli systems Show abstract We provide a purely topological description of minimal and uniquely ergodic systems whose unique invariant measure is loosely Bernoulli and has zero entropy (we call such measure preserving systems loosely Kronecker). At the heart of our result lies Feldman-Katok continuity, that is, continuity with respect to the Feldman-Katok pseudometric, which is a topological counterpart of the pseudometric f-bar on a symbolic space. The talk is based on a joint work with Felipe García-Ramos (CONACyT & UASLP, Mexico). |
6 III | Michalina Horecka On the Conley Index of rest points of a gradient-like flows on manifolds Show abstract In my talk I will present a result on the Conley Index of rest points of a gradient-like flows on manifolds proven using the notion of Lusternik-Shnirelmann cathegory given by Jonathan Pears in a paper "Degenerate Critical Points and the Conley Index". |
28 II | Wandering Seminar on Ergodic Theory & Dynamical Systems |
24 I | Błażej Żmija Deterministic sequences and normality Show abstract Let us fix an integer $b>1$. We say that a real number $x\in [0,1)$ with base-$b$ expansion $x=0.a_1 a_2 a_3\ldots$ is normal
if for every finite word $s=d_1 d_2\ldots d_k$, where $0\leq d_i< b$, we have that $\lim_{N\to \infty}\frac{v(s,x,N)}{N}=\frac{1}{b^k},$
where $v(s,x,N)$ denotes the number of times that $s$ appears as a subword of the first $N+k-1$ digits of $x$. The aim of the paper is to introduce
the notion of deterministic sequence, present examples of deterministic sequences, and show the following result: let $x\in [0,1)$ with base-$b$
expansion $x=0.a_1 a_2 a_3\ldots$ be normal. Let $(n_{i})$ be an increasing sequence of positive integers. Then the number $0.a_{n_1} a_{n_2} a_{n_3}
\ldots$ is normal if and only if $(n_i)$ is deterministic. The talk is based on the paper 'A Hot Spot Proof of the Generalized Wall Theorem'
by Bergelson and Vendehey. |
17 I | Roman Srzednicki Periodic orbits in isolating blocks Show abstract The talk presents some topological theorems on the existence of periodic orbits of autonomous differential equations |
10 I | Jedrzej Hodor Lusternik-Schnirelmann category based on the discrete Conley index - a paper by Katsuya Yokoi Show abstract Using Morse decomposition we define Conley category of an isolated, invariant set. We discuss some of its properties and the relation to the discrete Conley index in the invariant subspace and in the entire space. |
13 XII | Roman Srzednicki The Conley index - continuous and discrete time cases Show abstract In this continuation of the previous talks more properties of the Conley index will be discussed,
including its appropriation to discrete time dynamical systems. |
6 XII | Roman Srzednicki The Conley index - continuous and discrete time cases Show abstract In this continuation of the previous talk more properties of the Conley index will be discussed,
including its appropriation to discrete time dynamical systems. |
29 XI | Konrad Deka Borel Complexity of the set of generic points of a measure Show abstract Let $(X,T)$ be a minimal topological dynamical system, and let
$m$ be a probabilistic invariant measure. We say that a point $x$ in $X$ is generic
for $m$, if for any continuous real-valued function $f$ on $X$ the sequence
of averages $(f(x) + f(Tx) + ... + f(T^n(x))/(n+1)$ converges to the integral of $f$ wrt. $m$.
We study the Borel complexity of the set of generic points $\mbox{Gen}(m)$. We
prove that $\mbox{Gen}(m)$ is always an $F_{\sigma\delta}$ set (a countable
intersection of $F_\sigma$ sets), and produce an example which
matches this upper bound, that is, an example of a minimal dynamical
system with an invariant measure $m$
such that its set of generic points $\mbox{Gen}(m)$ does not appear at a lower
level of Borel hierarchy ($\mbox{Gen}(m)$ is neither $F_\sigma$ nor $G_\delta$). |
22 XI | Marcel Mroczek Naive entropy of Toeplitz subshifts Show abstract Toeplitz subshifts are examples of almost periodic but not
periodic symbolic dynamical systems. During the talk, we show that
under some mild assumptions (a properly generalized version of the
regularity of a Topeplitz configuration) the naive entropy of a
regular Toeplitz subshift over a
residually finite group is zero, which implies the same result for Rokhlin
and sofic entropy. We reduce the problem to the computation of entropy of
odometers, which are factors of Toeplitz subshifts. The presentation
will be based on my Masters Thesis. |
15 XI | Habibeh Pourmand Intrinsic ergodicity via obstruction entropies, part 2 Show abstract The entropy of obstructions to positive expansivity at scale $\varepsilon$ is the
supremum of the entropies $h_\mu (f)$ taken over the set of ergodic
$f$-invariant Borel probability measures giving a positive measure to
the set of points not satisfying the condition for positive
expansivity. The entropy of obstructions to specification at scale $\varepsilon$
is the infimum of the entropies of special collections $P\cup S$ of orbit
segments. These collections $P$ and $S$ are such that any finite
collection of orbit segments can be $\varepsilon$-shadowed (with a fixed gap size)
as long as one is allowed to remove elements of $P$ from the beginning
of each piece and elements of $S$ from the end of each piece. In my
talk, we will see if the entropy of such obstructions is smaller than
the topological entropy of the continuous map $f$, then $f$ is
intrinsically ergodic, i.e. has a unique measure of maximal entropy.
The talk is based on the paper "Intrinsic ergodicity via obstruction
entropies" by V. Climenhaga and J. Thompson. |
8 XI | Jakub Gismatullin Metric approximations of groups Show abstract During my talk I will introduce and explain sofic group by Gromov-Weiss and dynamical motivation behind them (Gottschalk's surjunctivity conjecture and dual Gottschalk's conjecture on Bernoulli shifts, Kaplansky direct finiteness conjecture on group rings). In particular, we look at metric approximations of groups and certain limit objects, called metric ultraproducts, which are groups and are useful in describing the general theory of approximations by metric groups. The importance of these limit objects in group theory became apparent recently and they are intensively studied. In the second part of the talk I will concentrate on simplicity and amenability of metric ultraproducts of groups. Examples are: some classes of linear groups over infinite fields, which are uniformly metric simple and Higman-Thompson groups, which are not-uniformly metric amenable and IET group. These generalize, respectively, the previously studied notions of uniform amenability and uniform simplicity. |
25 X | Habibeh Pourmand Intrinsic ergodicity via obstruction entropies Show abstract The entropy of obstructions to positive expansivity at scale $\varepsilon$ is the
supremum of the entropies $h_\mu (f)$ taken over the set of ergodic
$f$-invariant Borel probability measures giving a positive measure to
the set of points not satisfying the condition for positive
expansivity. The entropy of obstructions to specification at scale $\varepsilon$
is the infimum of the entropies of special collections $P\cup S$ of orbit
segments. These collections $P$ and $S$ are such that any finite
collection of orbit segments can be $\varepsilon$-shadowed (with a fixed gap size)
as long as one is allowed to remove elements of $P$ from the beginning
of each piece and elements of $S$ from the end of each piece. In my
talk, we will see if the entropy of such obstructions is smaller than
the topological entropy of the continuous map $f$, then $f$ is
intrinsically ergodic, i.e. has a unique measure of maximal entropy.
The talk is based on the paper "Intrinsic ergodicity via obstruction
entropies" by V. Climenhaga and J. Thompson. |
18 X | Dominik Kwietniak Abramov formula for the entropy of induced transformation Show abstract I will present a new proof of the Abramov formula for the Kolmogorov-Sinai entropy of the induced measure preserving transformation. |
11 X | Roman Srzednicki An introduction to Conley index Show abstract The talk will cover an overview of the Brouwer degree, Morse index, Brock Fuller index, Conley index (in detail), and the Ważewski theorem. |
14 IX | Jaqueline Godoy Mesquita (Universidade de Brasilia) Some contributions of Kurzweil integration to functional differential equations Show abstract In 1957, Jaroslav Kurzweil introduced in the literature a class of integral
equations called generalized ordinary differential equations (GODEs, for short).
These equations have been shown to be a powerful tool to investigate
measure functional differential equations, measure neutral functional differential
equations, among other types of equations, obtaining more general results for these equations.
In this talk, we provide a basic overview of the Kurzweil integration and
its contribution to the theory of functional differential equations as well as we
present some open problems in the area. |
7 VI | Paulo Varandas On the abundance of gluing orbit properties Show abstract The celebrated concept of specification, introduced by R. Bowen, serves as a tool for many
results both in ergodic theory and topological dynamics. Regrettably, a smooth map satisfying
the specification property is rare even among the class of partially hyperbolic diffeomorphisms.
In this talk, I will recall a weakening of the specification property, the gluing orbit property
(also known as transitive specification or weak specification), describe its abundance on the space
of homeomorphisms and its relation with partially hyperbolic dynamics. |
31 V | Damla Buldag Symbolic dynamics for beta-shifts and self-normal numbers Show abstract Renyi introduced representations of real numbers with an arbitrary
base. Given a real number $\beta > 1$, not necessarily an integer, one
considers the map $T_\beta (x) = \beta *x \mbox{ mod } 1$ defined on the interval
[0, 1). This map gives rise to a numeration system leading to
expansions to the base $\beta$. There exists a unique $T_\beta$-invariant
measure on [0, 1) maximizing the entropy of $T_\beta$; it is called the
Parry measure. It is absolutely continuous with respect to the
Lebesgue measure. A tentative classification of numbers according to
the dynamical properties of the associated beta-shifts was introduced
by F. Blanchard. During the talk, we pay special attention to two of
these classes: $C_3$, where $\beta$ is in $C_3$ when the expansion of {$\beta$} (fractional
part of beta) in base $\beta$ is not periodic, i.e., when the associated
beta-shift is not a sofic system; $C_5$, where $\beta$ is in $C_5$ when the expansion of {$\beta$} in base $\beta$ is
dense, or equivalently, the beta-shift is not a so-called synchronized system.
We also provide estimates on the size of the sets of $\beta$ sharing
some ergodic properties of their corresponding symbolic spaces which
are expressed in terms of the behaviour of the orbit of 1 with respect
to $T_\beta$. The talk is based on the paper of Joerg Schmeling (Ergod. Th. & Dynam.
Sys. (1997), 17, 675-694). |
17 V | Habibeh Pourmand Nonuniform hyperbolicity of $C^1$-generic diffeomorphisms Show abstract Ricardo Mañe gave a seminal talk on the ergodic properties of
$C^1$-generic diffeomorphisms. He divided his discussion into two parts,
one dealing with conservative (i.e., volume preserving)
diffeomorphisms, the other with non-conservative ones.
The aim of the paper is to realize some of Mañe’s vision of an
ergodic theory for non-conservative $C^1$-generic diffeomorphisms. More
precisely, first, we see that homoclinic classes of arbitrary
diffeomorphisms exhibit ergodic measures whose supports coincide with
the homoclinic class. Second, we see that generic (for the weak
topology) ergodic measures of $C^1$-generic diffeomorphisms are
nonuniformly hyperbolic. Third, we see extension of a theorem by Sigmund
on hyperbolic basic sets.
The talk is based on the paper "Nonuniform hyperbolicity of $C^1$-generic
diffeomorphisms" by Abdenur, Bonatti, and Crovisier. |
10 V | Melih Can Growth rate sequences of monomial maps Show abstract Bellon and Viallet introduced algebraic entropy in 1998. Algebraic
entropy of a rational self-map of a projective space equals the growth
rate of degrees of iterates of the map. Bellon and Vaillet proposed
two conjectures concerning this topic. The first one claims that the
algebraic entropy of a rational map is always an algebraic integer;
the second one says that the sequence of degrees of iterates of a
rational map satisfies a linear recurrence. The second claim has been
proven to be false by Propp and Hasselblatt in 2007. They gave a
counterexample to that conjecture involving a specific monomial map.
In my master thesis, I gave more general counterexamples with weaker
assumptions. In this presentation, we will discuss these
counterexamples. The talk will be based on the paper "Degree-growth of
monomial maps" by Propp and Hasselblatt from 2007 and my master
thesis. |
26 IV | Samuel Roth Inequalities for entropy, Hausdorff dimension, and Lipschitz constants Show abstract Many of the classic results for estimating the entropy of a dynamical system combine notions of dimension (Hausdorff dimension, topological dimension, dimension of the manifold, etc.) and expansion (the Jacobian matrix, Lyapunov exponents, etc.). One of these results says that for a Lipschitz continuous map on a compact metric space, the topological entropy is bounded above by the Hausdorff dimension times the logarithm of the Lipschitz constant. We explore whether or not this bound becomes sharp when we take an infimum over all compatible metrics. We give a positive answer for two classes of systems: linear maps on the torus, and 1-sided expansive mappings. As a corollary, we recover a 1-sided version of an old theorem by Mañé, that a topological space admitting an expansive mapping is necessarily finite-dimensional. This talk is coautored with Zuzana Roth. |
12 IV | Pierre Guillon Amenability, cellular automata, and Besicovitch pseudodistance Show abstract We present two characterizations of amenability of finitely generated
groups G, in terms of the space of configurations Aᴳ, where A is a
finite alphabet:
the equivalence between nonwanderingness and surjectivity for cellular
automata (shift-equivariant continuous maps of Aᴳ), and the existence
of a sequence $(X_n)$ of subsets of G for which the Besicovitch
pseudodistance (defined for two colorings x,y∈Aᴳ as the limsup, when n
grows, of the proportion of i∈$F_n$ for which xᵢ≠y) is shift-invariant.
This is a joint work with Silvio Capobianco. |
29 III | Mikołaj Frączyk Kesten type theorems Show abstract Let G be a group generated by a finite symmetric set S. In
the simple random walk on G we start at identity and at each step we
move by a uniform random element of S. Kesten’s criterion says that
the group G is amenable if and only if the probability of return at
time n decays sub-exponentially fast. After the original work of
Kesten in 50’ this theorem was generalised in many ways. In my talk I
will present some of these generalisations, including my own work on
random walks on topologically minimal G-systems and stationary random
graphs. |
15 III | Błażej Żmija Mertens' theorem for toral automorphisms Show abstract Let $T$ be a quasihyperbolic (that is, ergodic and not hyperbolic) automorphism of a $d$-dimensional torus. The aim of the talk is to prove a version of Mertens' theorem for it. More precisely, we prove that there exist constants $m$ and $C$ such that
$$
\sum_{|\tau |\leq N}\frac{1}{e^{h|\tau |}}=m\log N +C+O(N^{-1}),
$$
where the sum is taken over all closed orbits of length not greater than $N$ and $h$ is the topological entropy of $T$. We will show that in the generic situation the number $m$ is equal to $2^{d}$. We will also construct examples of automorphisms $T$ for which $m< 2^{d}$ and $m>2^{d}$. The talk is based on the paper "Mertens' Theorem for Toral Automorphisms" by Jaidee, Stevens and Ward. |
8 III | Katrin Gelfert Convex sum of hyperbolic measures Show abstract In the uniformly hyperbolic setting it is well known that the measure
supported on periodic orbits is dense in the convex space of all
invariant measures. We study the reverse question: assuming that some ergodic measure converges to
a convex sum of hyperbolic ergodic measures, what can be deduced about the initial
measures? To every hyperbolic measure whose stable/unstable Oseledets splitting
is dominated we associate canonically a unique class of periodic orbits for the
homoclinic relation, that we call its intersection class. In a dominated setting,
we prove that a convex sum of finitely many ergodic hyperbolic measures of the
same index is accumulated by ergodic measures if, and only if, they share the
same intersection class. We provide examples which indicate the
importance of the domination assumption. This is joint work with Christian Bonatti and Jairo Bochi. |
8 III | Lorenzo Díaz About the space of ergodic measures in partially hyperbolic systems Show abstract We will study transitive sets (typically, homoclinic classes) which
are partially hyperbolic with one dimensional center direction. We are specially
interested in the case where this direction is genuinely non-hyperbolic (i.e., there
are some hyperbolic periodic points which are expanding in the central direction
and other periodic points which are contracting).
In this setting, the space of ergodic measures splits into three parts according to
the exponent corresponding to the central direction: positive (expanding), negative
(contracting), and zero (neutral). In many cases, in very rough terms,
the expanding and contracting measures are glued throughout the neutral ones. But this is
not always the case, and in some case special configurations arise. A key ingredient
in those discussions are the so-called exposed pieces of dynamics. |
1 III | Wandering Seminar on Ergodic Theory & Dynamical Systems |
31 I | Mariusz Lemańczyk (UMK) Why one asummes zero entropy in Sarnak's conjecture? Show abstract In 2010 Sarnak formulated the conjecture on Möbius disjointness of topological zero entropy systems, that is:
for each zero entropy homeomorphism T of a compact metric space X, we have
(*) $\lim_{N\to\infty}\frac1N\sum_{n\leq N}f(T^nx)\mu(n)=0$
for all continuous $f:X\rightarrow\mathbb{R}$ and $x\in X$. Here $\mu$ stands for the classical arithmetic Möbius function. Sarnak's conjecture turns out to be closely related with some open problems in number theory, the most prominent illustration of such an interaction is being "almost equivalent" to the Chowla conjecture (from 1965) on the correlations of the Möbius function. As shown recently by Downarowicz and Serafin, there are however also positive entropy homeomorphisms satisfying (*). I will try to explain that nevertheless the assumption of zero entropy in Sarnak's conjecture is "correct" by exploiting the idea of convergence on so called short intervals and show that it leads to single sequences which can distinuish between zero and positive entropy systems. |
25 I | Agnieszka Kozdęba Substitution tilings of the Euclidean plane Show abstract Tiling substitution rules are divided into two broad classes: geometric and combinatorial. Geometric substitution tilings include self-similar tilings such as the well-known Penrose tilings; for this class there is a substantial body of research in the literature. Combinatorial substitutions are just beginning to be examined. We give numerous examples, mention selected major results and discuss connections between the two classes of substitutions.
The talk is based on the paper "A primer of substitution tilings of the Euclidean plane" by Natalie Priebe Frank. |
18 I | Bartosz Sobolewski On $\beta$-expansions associated with Pisot and Salem numbers Show abstract For a fixed real number $\beta$ > 1 we consider the $\beta$-transformation of the unit interval and the corresponding $\beta$-expansion. We investigate the structure of the set Per($\beta$) of periodic points of such a transformation (this is exactly the set of points with periodic $\beta$-expansion). We show that certain algebraic and topological properties of Per($\beta$) are closely related to $\beta$ being a Pisot or Salem number. In particular, we show that if $\beta$ is a Pisot number, then Per($\beta$) is the intersection of Q($\beta$) and the unit interval. The talk is mainly based on the paper "On periodic expansions of Pisot numbers and Salem numbers" by Klaus Schmidt. |
11 I | Michał Lipiński Persistent homology of Morse decomposition in combinatorial dynamics Show abstract Investigation of dynamics may concern systems for which the exact
equation describing their behaviour is unknown. However, by gathering
samples of dynamics, we can attempt to retrieve some features of the
underlying system. Our strategy is to embed sampled dynamics on
simplicial complex, considered later as a finite topological space, and
then, to study Morse decomposition of such system. Moreover, we
introduce the homological persistence of Morse decomposition as a tool
for validating this reconstruction. Our framework can be viewed as a
step toward extending the classical persistence theory to the "vector
cloud" data.
T. K. Dey, M. Juda, T. Kapela, J. Kubica, M. Lipiński, M.Mrozek.
Persistent Homology of Morse Decompositions in Combinatorial
Dynamics, arXiv preprint arXiv:1801.06590 |
4 I | Jarosław Duda Modeling, generation, applications of Markov fields, and classification of periodic tilings Show abstract Markov field is a generalization of Markov process into a graph, especially a lattice. Hammersley-Clifford theorem says
that they are equivalent with Gibbs field, like Ising model. I will introduce to this topic from perspective of computer science
application for 2D Fibonacci coding: storing information in a 0/1 lattice without two neighboring '1', for example to improve hard
disk capacity. While there are many approximate methods, I will show how to approach in the optimal way. I will also present
results about multidimensional Markov types, which extreme points allow for systematic classification of periodic tilings. |
21 XII | Nishant Chandgotia (Jerozolima) Universal models for $\ \mathbb {Z}^d$ actions Show abstract Krieger's generator theorem shows that any free invertible ergodic measure preserving action $(Y,\mu, S)$ can be modelled by $A^\mathbb{Z}$ (equipped with the shift action) provided the natural entropy constraint is satisfied; we call such systems (here it is $A^\mathbb{Z}$) universal. Along with Tom Meyerovitch, we establish general specification-like conditions under which $\mathbb{Z}^d$-dynamical systems are universal. These conditions are general enough to prove that:
1) a self-homeomorphism with almost weak specification on a compact metric space (answering a question by Quas and Soo)
2) proper colourings of the $\mathbb{Z}^d$ lattice with more than two colours and the domino tilings of the $\mathbb{Z}^2$ lattice (answering a question by Şahin and Robinson)
are universal. Our results also extend to the almost Borel category giving partial answers to some questions by Gao and Jackson. |
14 XII | Michalina Horecka On the use of the topological degree theory in broken orbits analysis Show abstract Dynamical systems $f$ in $\mathbb{R}^d$ are studied. Let $\Omega\subset\mathbb{R}^d$ be a bounded open set. We will be interested in those periodic orbits such that at least one of its points lies inside $\Omega$ and at least one of its points lies outside $\Omega$; the orbits with this property are called $\Omega$-broken. Information about the structure of the set of $\Omega$-broken orbits is suggested; results are formulated in terms of
topological degree theory. The talk is based on the paper by A. V. Pokrowski and O. A. Rasskazow. |
7 XII | Adam Śpiewak Metric mean dimension and analog compression Show abstract The talk will be based on a joint work with Yonatan Gutman. The aim of the project is to study connections between the compression theory for analog signals (modeled as subshifts in $[0,1]^\mathbb{Z}$) and the metric mean dimension - dynamical invariant introduced by B. Weiss and E. Lindenstrauss. Our main results are upper and lower bounds (in terms of the metric mean dimension and its variants) for certain compression rates, where one imposes various regularity conditions on the compressor and decompressor functions (e.g. linearity, Höldericity). An essential tool is the variational principle for the metric mean dimension in terms of the rate-distortion function, obtained recently by E. Lindenstrauss and M. Tsukamoto. |
30 XI | Przemysław Kucharski On sofic entropy of regular Toeplitz systems Show abstract The notion of a Toeplitz sequence can be generalized to any residually finite countable group. As a result for every countable residually finite group we have the class of Toeplitz dynamical systems. All Toeplitz systems are minimal. Since every residually finite group is sofic it is natural to ask about sofic entropy of Toeplitz systems. In particular, it is natural to study sufficient conditions for a Toeplitz system to be zero entropy system. We will present a partial answer to these questions for regular Toeplitz systems on residually finite groups. |
23 XI | Marcel Mroczek Sofic groups and entropy Show abstract Kolmogorov-Sinai entropy can be generalised from $\mathbb Z^d$ lattices to amenable groups and further yet to sofic groups. In this talk I will give some motivation for this generalisation, define sofic groups and prove some of their properties. Then I will introduce sofic entropy with some examples. |
16 XI | Elżbieta Krawczyk Subsystems of substitutive systems and generalisation of Cobham's theorem Show abstract A topological dynamical system is substitutive if it arises as the orbit closure of a substitutive sequence. During the talk we will present a classification of subsystems of a substitutive system; in particular we will show that all transitive subsystems of a substitutive system are substitutive. As an application we will obtain a complete characterisation of sets of words that can occur as common factors of two multiplicatively independent automatic sequences. This generalises the classical Cobham's theorem that states that two multiplicatively independent automatic sequences are equal if and only if they are eventually periodic (based on joint work with Jakub Byszewski and Jakub Konieczny). |
9 XI | Jakub Byszewski (Jagiellonian University in Kraków) Dynamics on abelian varieties in positive characteristic (c.d.) Show abstract We study periodic points of endomorphisms of abelian varieties over fields of positive characteristic p, which can be regarded as a positive characteristic analogue of (complex) toral endomorphisms. Periodic points are counted by the dynamical zeta function introduced by Artin and Mazur. In many contexts the dynamical zeta function is rational (this is the case, e.g., for axiom A diffeomorphisms). We prove that in our situation the dynamical zeta function is either rational or transcendental depending on the local behaviour of the endomorphism on the p-torsion. We also study the questions of analytic continuation, asymptotic behaviour of the orbit length distribution, and the analogues of the Prime Number Theorem. This is joint work with Gunther Cornelissen. We will also briefly discuss ongoing work concerning extending these results to general algebraic groups (with Gunther Cornelissen) and dynamically affine maps (with Gunther Cornelissen, Mark Houben, and Lois van der Meijden). |
19 X | Jakub Byszewski (Jagiellonian University in Kraków) Dynamics on abelian varieties in positive characteristic Show abstract We study periodic points of endomorphisms of abelian varieties over fields of positive characteristic p, which can be regarded as a positive characteristic analogue of (complex) toral endomorphisms. Periodic points are counted by the dynamical zeta function introduced by Artin and Mazur. In many contexts the dynamical zeta function is rational (this is the case, e.g., for axiom A diffeomorphisms). We prove that in our situation the dynamical zeta function is either rational or transcendental depending on the local behaviour of the endomorphism on the p-torsion. We also study the questions of analytic continuation, asymptotic behaviour of the orbit length distribution, and the analogues of the Prime Number Theorem. This is joint work with Gunther Cornelissen. We will also briefly discuss ongoing work concerning extending these results to general algebraic groups (with Gunther Cornelissen) and dynamically affine maps (with Gunther Cornelissen, Mark Houben, and Lois van der Meijden). |
12 X | Fryderyk Falniowski Multiplicative Weights Update algorithm in congestion games and emergence of chaos (joint work with T. Chotibut, M. Misiurewicz and G. Piliouras) Show abstract The Multiplicative Weights Update method is a ubiquitous meta-algorithm used e.g. in machine learning, optimization, theoretical computer science and game theory. We will analyze convergence of MWU for congestion games to exact Nash equilibria. We will show how aggressive behavior (fast learning) of players may result in lack of convergence - appearance of limit cycles and chaotic behavior. |
5 X | Gunther Cornelissen Galois theory and dynamical systems Show abstract It is known that two number fields are isomorphic if and only if the Galois groups of their algebraic closures (an analogue of fundamental groups) are isomorphic as topological groups - this is an example of Grothendieck s anabelian philosophy and due to Neukirch and Uchida in the 1970s. However, such Galois groups are not at all understood; their representation theory is the "Langlands programme". We can consider their abelianizations (an analogue of homology groups): these are very well understood through a part of algebraic number theory called class field theory. On the other hand, they fail miserably in determining the number field. In this talk, I will show that there exists a dynamical system, consisting of a topological space modelled on the abelianized Galois groups together with the action of a countably generated monoid such that two number fields are isomorphic if and only if the systems are topologically conjugate, if and only if they are orbit equivalent (joint work with Xin Li, Matilde Marcolli and Harry Smit). |
15 VI | Jakub Konieczny Sarnak’s conjecture and digital functions Show abstract Sarnak’s conjecture is one of the most intensely studied problems in number theory and dynamics in the recent years. During the talk I will discuss the history of this problem, with special emphasis on sequences defined in terms of expansion of a number in a fixed basis. New results concerning $q$-semimultiplicative sequences will be presented. |
8 VI | Michał Kupsa (Institute of Information Theory and Automation, Prague) $\beta$-free shifts, sofic approximations, and invariant measures Show abstract Arcwise connectedness and entropy-density of extremal points of the simplex of invariant meaures for $\beta$- free shifts will be presented. We touch as well some motivations connected to number theory and possible generalization of our results. This is a joint work with D. Kwietniak. |
8 VI | Habibeh Pourmand Cesaro and harmonic limits of empirical measures Show abstract In the talk, I will discuss a recent result of Gomilko, Kwietniak, and Lemańczyk saying that Sarnak’s conjecture implies Chowla’s conjecture along a subsequence. The proof of this fact is based on properties of logarithmic empirical measure for dynamical systems. |
25 V | Bartosz Sobolewski, Błażej Żmija Symbolic dynamical systems associated with substitutions Show abstract In the talk we will recall basic notions and results related to substitutions acting on finite alphabets. In particular, we will prove that a symbolic dynamical system associated with a primitive substitution is minimal and uniquely ergodic. We will also investigate further properties for specific cases of symbolic dynamical systems, e.g., those associated with Chacon and Fibonacci substitutions. The talk will be based on Chapter 5 of the book ”Substitutions in Dynamics, Arithmetics and Combinatorics” by N. Pytheas Fogg. |
18 V | Bartosz Sobolewski, Błażej Żmija Symbolic dynamical systems associated with substitutions Show abstract In the talk we will recall basic notions and results related to substitutions acting on finite alphabets. In particular, we will prove that a symbolic dynamical system associated with a primitive substitution is minimal and uniquely ergodic. We will also investigate further properties for specific cases of symbolic dynamical systems, e.g., those associated with Chacon and Fibonacci substitutions. The talk will be based on Chapter 5 of the book ”Substitutions in Dynamics, Arithmetics and Combinatorics” by N. Pytheas Fogg. |
11 V | Sławomir Rybicki (UMK, Toruń) Symmetric Lyapunov center theorem |
27 IV | Igor Popko Topological conjugacy of constant length substitution dynamical systems |
20 IV | Melih Emin Algebraic entropy of monomials Show abstract For projectivizations of rational maps, Bellon and Viallet defined the notion of algebraic entropy using the
exponential growth rate of the degrees of iterates. The particular rational maps which I study are monomials.
In my presentation I would like to give some ideas on how to compute algebraic entropy and compare it with
the topological entropy. |
13 IV | Marielle Simon Standard and anomalous diffusion of energy in chains of coupled oscillators Show abstract Over the last few years, anomalous behaviors have been
observed for one-dimensional chains of oscillators. The rigorous
derivation of such behaviors from deterministic systems of Newtonian
particles is very challenging, due to the existence of conservation
laws, which impose very poor ergodic properties to the dynamical
system. A possible way out of this lack of ergodicity is to introduce
stochastic models, in such a way that the qualitative behaviour of
the system is not modified. One starts with a chain of oscillators
with a Hamiltonian dynamics, and then adds a stochastic which keeps
the fundamental
conservation laws (energy, momentum and stretch, usually).
For the unpinned harmonic chain where the velocities of particles can
randomly change sign (and therefore the only conserved quantities of
the dynamics are the energy and the stretch), it is known that, under
a diffusive space-time scaling, the energy profile evolves following a
non-linear diffusive equation involving the stretch. Recently it has
been shown that in the case of one-dimensional harmonic oscillators
with noise that preserves the momentum, the scaling limit of the
energy fluctuations is ruled by the fractional heat equation. |
13 IV | Alejandro Passeggi The Franks-Misiurewicz conjecture: context and recent advances Show abstract In this talk we will introduce the rotation theory of the
two dimensional torus. We will
focus on the Franks-Misiurewicz conjecture and the related recent advances. |
13 IV | Michele Triestino Smoothening singular group actions on manifolds Show abstract Motivated by the recent results around Zimmer’s program, we
study group actions on
manifolds, with singular regularity (we require that every element is
differentiable at all but countably
many points). The groups under considerations have a fixed point
property, named FW, which generalizes
Kazhdan’s property (T) (in particular we can consider actions of
lattices in higher-rank simple Lie
groups).
The main result is that if a group G has property FW, any singular
action of $G$ on a closed manifold
1) either has a finite orbit,
2) or is conjugate to a differentiable action, up to changing the
differentiable structure of the manifold.
This is a joint work with Yash Lodha and Nicolas Matte Bon. |
13 IV | Safoura Zadeh Isomorphisms between the left uniform compactification of locally compact groups Show abstract For a locally compact group $G$, let $C_{b}(G)$ be the space
of all complex-valued, continuous and bounded functions on $G$
equipped with the sup-norm, and $LUC(G)$ be the subspace of $C_{b}(G)$
consisting of all functions $f$ such that the map $G\to
C_b(G);x\mapsto l_xf$ is continuous, where $l_xf$ is the function
defined by $l_xf(y)=f(xy)$, for each $y\in G$. The subspace $LUC(G)$
forms a unital commutative C*-algebra. We can induce a multiplication
on the Gelfand spectrum of $LUC(G)$, $G^{LUC}$, with which $G^{LUC}$
forms a semigroup. When $G$ is discrete, $G^{LUC}$ is in fact the
Stone-Cech compactification of $G$. In this talk, I study some
properties of $G^{LUC}$, the so called right topological semigroup
compactification of $G$. I also discuss the question of when the
corona, $G^{LUC}\setminus G$, determines the underlying topological
group $G$. |
6 IV | Maik Gröger Unique ergodicity and zero entropy of irregular symbolic extensions of irrational rotations Show abstract A classical result by Markley and Paul states that irregular almost automorphic systems over irrational
rotations are typically not uniquely ergodic and have positive entropy.
By constructing a particular Cantor set, we prove that for each irrational rotation there still are such almost
automorphic extensions which are mean-equicontinuous (and hence have zero entropy and are uniquely ergodic).
We will shortly review the results by Markley and Paul and then discuss the construction of the Cantor set.
This is a joint work with Eli Glasner, Tobias Jager and Christian Oertel. |
6 IV | Gabriel Fuhrman Structure of mean equicontinuous group actions Show abstract The notion of mean equicontinuity, under a different name, was first introduced by Fomin in 1951 to deduce
a dynamical property implying pure point spectrum. It was later studied by Auslander in more detail and has
gained renewed interest in recent years for several different reasons. The talk will survey parts of the old and
new insights with the particular focus on long-range order and actions of general amenable groups. |
23 III | Michalina Horecka On Lefschetz periodic point free self-maps Show abstract We study the periodic point free maps and Lefschetz periodic point free maps on connected retract of a finite
simplicial complex using the Lefschetz numbers. Special emphasis is placed on the self-maps of products of
spheres and wedge sums of spheres (based on an article by J. Llibre and V. F. Sirvent). |
16 III | Welington da Silva Cordeiro $N$-expansive homeomorphisms with the shadowing property Show abstract The dynamics of expansive homeomorphisms with the shadowing property may be very complicated but it is
quite well understood (see Aoki and Hiraide’s monograph, for example). It is known that these systems admit
only a finite number of chain recurrent classes (Spectral Decomposition Theorem). In 2012, Morales introduced
a generalization of expansivity property, called N-expansive property. For every $N\in\mathbb N$, we will exhibit an $N$-expansive
homeomorphism, which is not $(N − 1)$-expansive, has the shadowing property, and admits an infinite
number of chain-recurrent classes. We discuss some properties of the local stable (unstable) sets of N-expansive
homeomorphisms with the shadowing property and use them to prove that some types of the limit shadowing
property are present. We will discuss a Spectral Decomposition Theorem for $N$-expansive homeomorphisms with
the shadowing property defined on surfaces. |
9 III | Damla Buldag Lagarias Wang finiteness conjecture Show abstract The Lagarias Wang finiteness conjecture was introduced in 1995 in connection with problems related to
spectral radius computation of finite sets of matrices. The conjecture has been proved to be false recently and
there are alternative proofs of it. One of the proofs on specific matrices will be presented. |
2 III | Agnieszka Kozdęba On the velocity of planar trajectories Show abstract Consider two trajectories, each forming a Jordan curve with a finite length in the two dimensional plane. We
show that the integral of the velocity of the portion of one curve that is included in the inside of the second
curve is bounded by half the length of the latter curve (based on an article by Zvi Artstein and Ido Bright). |
26 I | Martha Łącka Non-hyperbolic ergodic measures with positive entropy and full support Show abstract Abraham and Smale proved that hyperbolic diffeomorphisms are not dense among all diffeomorphisms of a
given manifold. This inspired Pesin to define a weaker notion of hiperbolicity: he proposed a notion of a hyperbolic
ergodic measure. Gorodetsky, Ilyashenko, Kleptsyn, and Nalsky constructed an open set of diffeomorphisms of
a three dimensional torus such that every diffeomorphism in this set admits a non-hyperbolic ergodic measure.
Their method leads, however, to measures with zero entropy. Bonatti, Bochi, and Diaz in the series of two papers
proved that for every $n\geq 3$ there exist a manifold of dimension $n$ and an open set of diffeomorphisms admitting
a non-hyperbolic ergodic measure with positive entropy and an open set of diffeomorphisms admitting a nonhyperbolic
ergodic measure with full support. We will show that one can strengthen their results by constructing
diffeomorphisms with a non-hyperbolic ergodic measure with positive entropy and full support. The talk will
be based on the joint work with Ch. Bonnati, L. Diaz, and D. Kwietniak. |
19 I | Sławomir Rams On automorphisms of Enriques surfaces and their entropy Show abstract Consider an arbitrary automorphism of an Enriques surface with its lift to the covering $K3$ surface. We prove
a bound of the order of the lift acting on the anti-invariant cohomology sublattice of the Enriques involution.
We use it to obtain some $\mod 2$ constraint on the original automorphism. As an application, we give a necessary
condition for Salem numbers to be dynamical degrees on Enriques surfaces and obtain a new lower bound on
the minimal value (joint work with Y. Matsumoto (Nagoya) and H. Ohashi (Tokyo)). |
12 I | Felipe García Ramos Entropy pairs on shadowing amenable group actions Show abstract Joint work with Sebastian Barbieri. We will characterize entropy pairs on shadowing amenable group actions
using the homoclinic relation. This will help up construct examples with completely positive entropy in order
to answer a question by Pavlov. |
5 I | Jakub Konieczny Automatic sequences as good weights for ergodic theorems Show abstract We study correlation estimates of automatic sequences (that is, sequences computable by finite automata)
with polynomial phases. As a consequence, we provide a new class of good weights for classical and polynomial
ergodic theorems, not coming themselves from dynamical systems. We show that automatic sequences are good
weights in $L^2$
for polynomial averages and totally ergodic systems. For totally balanced automatic sequences (i.e.,
sequences converging to zero in mean along arithmetic progressions) the pointwise weighted ergodic theorem
in $L^1$ holds. Moreover, invertible automatic sequences are good weights for the pointwise polynomial ergodic
theorem in $L^r$, $r>1$. This talk is based on joint work with Tanja Eisner. |
15 XII | Olena Karpel (IM PAN & LTPE NASU) Exact number of ergodic measures for Bratteli diagrams Show abstract We study the simplex of probability measures on a Bratteli diagram which are invariant with respect to the
tail equivalence relation. We prove a criterion of unique ergodicity of a Bratteli diagram. In case when a finite
rank $k$ Bratteli diagram $B$ has $1\leq l\leq k$ ergodic invariant measures, we describe the structures of the diagram
and the subdiagrams which support these measures. This is a joint work with S. Bezuglyi and J. Kwiatkowski. |
8 XII | Piotr Pikul Rotation sets for subshifts of finite type Show abstract Rotation sets are generalizations of rotation number defined for homeomorphisms of a circle. We define rotation
set for an arbitrary dynamical system on $X$ and a map from $X$ to $\mathbb R^n$
and consider the case of transitive subshift
of finite type and a map constant on cylinders of length $2$. Then the rotation set is a convex hull of finite set
and rotation vectors of periodic points are dense in it. Moreover vectors from the interior are rotation vectors
of ergodic measures.
Based on an article by Krystyna Ziemian (Fundametna Mathematicae 146). |
1 XII | Jan Boroński Around the Cartwright-Littlewood-Bell fixed point theorem Show abstract The Cartwright-Littlewood-Bell fixed point theorem asserts that any planar homeomorphism fixes a point
in any invariant continuum that does not separate the plane. I shall discuss the historical background of this
result, and its more recent generalizations. |
24 XI | Marta Straszak Quasi-uniform convergence in dynamical systems generated by amenable group actions Show abstract We study properties of the Weyl pseudometric in a dynamical system generated by an amenable group action.
Specifically we obtain several results regarding the interaction of the resulting topology with the entropy function
and other important objects. These generalize the work of Downarowicz and Iwanik. As a corollary we obtain
an alternative proof of Krieger’s theorem. |
17 XI | Michał Lipiński Simplicial multivalued maps and the witness complex for dynamical analysis of time series (wg pracy Z. Alexandra et al.) Show abstract Based on a paper by Z.Alexander, E.Bradley, J.D.Meiss and N.F.Sanderson (2015).
Topology-based analysis of time-series data from dynamical systems is powerful: it potentially allows for
computer-based proofs of the existence of various classes of regular and chaotic invariant sets for high-dimensional
dynamics. Standard methods are based on a cubical discretization of the dynamics and use the time series to
construct an outer approximation of the underlying dynamical system. The resulting multivalued map can be
used to compute the Conley index of isolated invariant sets of cubes. In this paper we introduce a discretization
that uses instead a simplicial complex constructed from a witness-landmark relationship. The goal is to obtain
a natural discretization that is more tightly connected with the invariant density of the time series itself. The
time-ordering of the data also directly leads to a map on this simplicial complex that we call the witness map.
We obtain conditions under which this witness map gives an outer approximation of the dynamics and thus can
be used to compute the Conley index of isolated invariant sets. The method is illustrated by a simple example
using data from the classical Henon map. |
10 XI | Bill Mance (UAM) Normal numbers for the Cantor series expansion and possible applications in algebraic geometry Show abstract Topology-based analysis of time-series data from dynamical systems is powerful: it potentially allows for
computer-based proofs of the existence of various classes of regular and chaotic invariant sets for high-dimensional
dynamics. Standard methods are based on a cubical discretization of the dynamics and use the time series to
construct an outer approximation of the underlying dynamical system. The resulting multivalued map can be
used to compute the Conley index of isolated invariant sets of cubes. In this paper we introduce a discretization
that uses instead a simplicial complex constructed from a witness-landmark relationship. The goal is to obtain
a natural discretization that is more tightly connected with the invariant density of the time series itself. The
time-ordering of the data also directly leads to a map on this simplicial complex that we call the witness map.
We obtain conditions under which this witness map gives an outer approximation of the dynamics and thus can
be used to compute the Conley index of isolated invariant sets. The method is illustrated by a simple example
using data from the classical Henon map. |
27 X | Roman Srzednicki Periodic solutions of the Whitney's inverted pendulum Show abstract In the book “What is Mathematics?” Richard Courant and Herbert Robbins presented a solution of a Whitney’s
problem of an inverted pendulum on a railway carriage moving on a straight line. Since the appearance of
the book in 1941 the solution was contested by several distinguished mathematicians. In the talk I present the
history of the problem until its first formal solution published by Ivan Polekhin in 2014. Polekhin also proved a
theorem on the existence of a periodic solution of the problem provided the motion of the carriage on the line
is periodic. I indicate we how to obtain a similar result if the carriage moves periodically on the plane. |
20 X | Krystyna Kuperberg Dynamical systems on matchbox manifolds |
13 X | Elżbieta Krawczyk Partition regularity and topological dynamics Show abstract Recently Joel Moreira showed that any finite colouring of natural numbers admits a monochromatic configuration
of the form $\{x, x + y, xy\}$, thereby (partially) solving a long-standing conjecture of Hindman. His
proof proceeds by first translating the problem into the language of topological dynamics and then showing a
relevant recurrence statement; an approach that goes back to Furstenberg and Weiss’ dynamical proof of van
der Waerden’s theorem from 1978. During the talk we’ll present a unified approach to partition regular theorems
including van der Waerden’s theorem, its polynomial extension obtained by Bergelson and Leibman and
recent result of Moreira, higlight the role that ultrafilters play in partition regularity and offer some extension
of Moreira’s result. |
6 X | Dominik Kwietniak On Problem 32 from Rufus Bowen's list: classification of shift spaces with specification Show abstract Rufus Bowen left a notebook containing 157 open problems and questions. Problem 32 on that list asks for
a classification of shift spaces with the specification property. Unfortunately, there is no universally accepted
agreement what does it mean “to classify” a family of mathematical objects and Bowen did not specify what
he had in mind.
I will describe one of the most commonly popular ways of making the problem formal based on the language
of Borel equivalence relations. Inside that framework I will explain a conjecture saying that (roughly speaking)
there is no reasonable classification for shift spaces with specification. In particular, if the conjecture holds true,
then no classification using a finite set of definable invariants is possible. This will solve the problem provided
that Bowen would agree with the set-theoretic notion of “classification”. |
9 VI | Jakub Byszewski Niezmiennik Halmosa i wielomiany cyklotomiczne |
2 VI | Kamil Smęda O twierdzeniu KKM (wg pracy C. Horvatha) |
26 V | Martha Łącka Pseudometryki dynamicznie generowane |
19 V | Jan Strelcyn Matematyka i matematycy na Cesarskim Uniwersytecie Warszawskim (1870-1915) |
5 V | Łukasz Kubica Shadowing is generic - a continuous map case |
28 IV | Łukasz Kubica Shadowing is generic - a continuous map case |
21 IV | Karol Gryszka On period-like motions in flows |
7 IV | Jakub Konieczny Gowers norms of Thue-Morse, Rudin-Shapiro and other automatic sequences |
31 III | Piotr Oprocha O granicach odwrotnych i nieodwracalnych układach minimalnych (wyniki wspólne z J. Borońskim i A. Clarkiem) |
10 III | Piotr Pikul A Bond for the Fixed-Point Index of an Area-Preserving Map with Applications to Mechanics |
10 III | Roman Srzednicki Indeks Fullera |
3 III | Piotr Pikul A Bond for the Fixed-Point Index of an Area-Preserving Map with Applications to Mechanics |
27 I | Piotr Pikul A Bond for the Fixed-Point Index of an Area-Preserving Map with Applications to Mechanics |
20 I | Lech Pasicki Kilka twierdzeń o punktach stałych |
13 I | Dov Bronisław Orbity okresowe skrętu Dehna na torusie |
16 XII | Dawid Tarłowski O zbieżności leniwej Show abstract Podczas referatu wprowadzone zostanie pojęcie zbieżności leniwej dla ciągu zmiennych losowych - jest to
pewien szczególny rodzaj zbieżności stochastycznej takiego ciągu do ustalonego zbioru. Przedstawione zostaną
warunki wystarczające dla takiej zbieżności, sformułowane twierdzenie uzasadni kiepskie tempo zbieżności wielu
bazujących na losowości metod algorytmicznych używanych w praktyce do znajdowania ekstremów globalnych
funkcji. |
9 XII | Jakub Byszewski Wielomiany uogólnione, nilrozmaitości i ciągi automatyczne |
2 XII | Michalina Horecka On the fixed point index of iterates of planar homeomorphisms |
25 XI | Andrzej Czarnecki Foliacje okręgami w wymiarach 3 i 4 |
18 XI | Martha Łącka Pseudometryka Feldmana |
4 XI | Hector Barge Topology and Dynamics of Non-Saddle Sets Show abstract The theory of isolated invariant sets has proven to play a central role in the study of the qualitative properties
of differential equations and dynamical systems. In this talk we will focus on a special kind of isolated invariant
sets, the class of isolated non-saddle sets, which in particular contains the class of attractors. We will expose
some global properties of non-saddle sets such as the existence of homoclinic trajectories and dissonant points
or the existence of a dual non-saddle set. In addition we will discuss some robustness properties. |
28 X | Hector Barge 2-dimensional Conley index and applications Show abstract The aim of this talk is to give a method to compute the Conley index of an isolated invariant continuum $K$
of a flow on a surface using only the topology of K and some knowledge about its unstable manifold. To do
this we will show the existence of a special kind of isolating blocks, the so-called regular isolating blocks whose
topology is related to the topology of $K$. Besides we will see some applications such as the classification of those
isolated invariant continua without fixed points or a complete study its continuations. |
21 X | Cezary Olszowiec Fictitious play vs coupled replicator equations |
14 X | Odsłonięcie ławki z figurami Banacha i Nikodyma |
7 X | Marcin Kulczycki Filling R^3 with circles according to Elmar Vogt |
10 VI | Jakub Byszewski Ciągi Dolda i dynamiczna funkcja zeta |
3 VI | Robert Skiba Dychotomia wykładnicza dla nieautonomicznych równań różniczkowych Show abstract Podczas referatu zamierzam przybliżyć pojęcie dychotomii wykładniczej (ED), które stanowi naturalne uogólnienie
pojęcia hiperboliczności dla autonomicznych równań różniczkowych. Następnie przedstawię zastosowania
ED do poszukiwania trajektorii homoklinicznych równań różniczkowych nieautonomicznych (zarówno ciągłych,
jak i dyskretnych). |
20 V | Seminarium w ramach Wandering Seminar |
6 V | Roman Srzednicki Conley index at infinity |
29 IV | Roman Srzednicki Indeks Conleya i entropia topologiczna |
22 IV | Piotr Oprocha Atraktory, obroty i continua |
15 IV | Klaudiusz Wójcik Wokół formuły Poincare'go o indeksie |
8 IV | Marcin Kulczycki Shifty rozmieszczeniowe |
1 IV | Anna Gierzkiewicz-Pieniążek Całki pierwsze układu Szekeresa |
18 III | Anna Szymusiak Entropia pomiaru kwantowego |
11 III | Klaudiusz Wójcik Twierdzenie Poincare-Birkhoffa |
4 III | Jakub Byszewski O problemie Baldwina: tranzytywne odwzorowanie na dendrycie o zerowej entropii |
26 II | Roman Srzednicki O twierdzeniu Dehna-Lickorisha |
22 I | Joanna Janczewska Rozwiązania homokliniczne w układach Lagrange'a |
8 I | Roman Srzednicki O pewnym problemie Whitneya |
18 XII | Dominik Kwietniak Invariant measures of shift spaces generated by rational subset of integers. Show abstract Given a subset A of integers we may identify the characteristic function $c_A$ of $A$ with a point in the full
shift space of infinite 0-1 sequences. The closure of the orbit of $c_A$ with respect to the left-shift operator leads
to a symbolic dynamical system, whose dynamical properties depend on combinatorial properties of $A$. This
approach goes back at least to Furstenberg.
Recently, Sarnak proposed to study square-free integers through dynamics of the shift space constructed in
the above way.
El Abdalauoi-Lemanczyk-De La Rue and Bartnicka-Kasjan-Kułaga-Przymus-Lemańczyk extended Sarnak’s
approach and studied $B$-free integers generated by arbitrary subset of integers. Recall that an integer is $B$-free
if it has no factor in $B$. Note that square free integers are generated by $B_sq=\{p^2\,:\,p
\in \mathbb{P}\}$.
These shift spaces and their higher dimensional analogs attracted recently much attention.
During my talk I will describe a new approach to a related class of systems generated by rational subsets
of integers. This class includes $B$-free shifts generated by sets $B$ possessing an asymptotic density. A set $B$ is
rational if it can be arbitrary well approximated with respect to the upper asymptotic density by finite unions
of arithmetic progressions. We study invariant measures of these systems and study their entropy. (This is a
joint work with Jakub Konieczny and Michal Kupsa.) |
11 XII | Roman Srzednicki O rozmaitościach trójwymiarowych |
4 XII | Roman Srzednicki O rozmaitościach trójwymiarowych |
27 XI | Marian Mrozek Teoria Morse'a-Conleya-Formana dla kombinatorycznych pól wielowektorowych Show abstract Z końcem lat 90-tych XX wieku R. Forman zdefiniował kombinatoryczne pola wektorowe dla CW kompleksów
i przedstawił wersję teorii Morse’a dla pól acyklicznych. Studiował również kombinatoryczne pola wektorowe bez
założenia acykliczności, zdefiniował dla nich zbiór łańcuchowo powracający oraz udowodnił nierówności Morse’a.
Prace Formana początkowo przyjęto z rezerwą, ale świat przekonał się do nich dzięki szybko rosnącej liczbie
zastosowań: od topologii obliczeniowej poprzez analizę obrazów, zagadnienia wizualizacji po usuwanie z danych
szumów. Jednak, co ciekawe, jak na razie brakuje zastosowań tam gdzie wydaje się to najbardziej naturalne: w
dynamice obliczeniowej.
W wykładzie przypomnimy wyniki Formana, przedstawimy uogólnienie w postaci kombinatorycznych pól
wielowektorowych, a na jego bazie zaprezentujemy rozszerzenie teorii Morse’a-Formana w stronę dynamiki topologicznej. |
20 XI | Marian Mrozek Teoria Morse'a-Conleya-Formana dla kombinatorycznych pól wielowektorowych |
13 XI | Krystyna Kuperberg Potoki na niezwartych rozmaitościach trójwymiarowych w których każda trajektoria jest ograniczona Show abstract W 1996 roku, Greg Kuperberg skonstruował skręconą wstawkę w celu wykonywania operacji Dehna na rozmaito±ciach
trójwymiarowych zgodnej z danym układem dynamicznym. Tą metodę zastosował do udowodnienia,
że każda rozmaitość trójwymiarowa bez brzegu posiada gładki, zachowujący miaer układ dynamiczny, z
dyskretną rodziną okresowych trajektorii, które są jedynymi zbiorami minimalnymi.
W tym odczycie zostaną przedstawione pokrótce operacje Dehna wycinania i wklejania pełnych torusów na
rozmaitościach trójwymiarowych zgodne z dynamiką. Przedstawione będzie następujące uogólnienie powyższego
twierdzenia:
Każda rozmaitość trójwymiarowa bez brzegu posiada gładki, zachowujący miarę układ dynamiczny, z dyskretną
rodziną okresowych trajektorii, które są jedynymi zbiorami minimalnymi i taki, że każda trajektoria jest ograniczona.
Trajektoria jest ograniczona jeżeli jej domknięcie jest zwarte. |
6 XI | Łukasz Kubica A rest point free dynamical system on R^3 with uniformly bounded trajectories |
30 X | Krzysztof Hajos Counterexamples to the Seifert Conjecture |
23 X | Krzysztof Hajos Counterexamples to the Seifert Conjecture |
16 X | Krzysztof Ciesielski Lejek |
16 X | Krystyna Kuperberg Fascynująca własność punktu stałego Lejek |
9 X | Karol Gryszka Denjoy's flow on the torus |
2 X | Krystyna Kuperberg Seifert's question |
12 VI | Marek Milowski Denjoy theorem |
5 VI | Agnieszka Dworak Modele epidemii w populacji z okresową demografią |
29 V | ? ? |
22 V | Elżbieta Uznańska Chaos w ciągłych układach dynamicznych na polskich przestrzeniach |
15 V | Klaus Boehmer Dew drops on spider webs, nonlinear principles, mathematical and numerical aspects |
24 IV | Roman Srzednicki ? |
17 IV | Natalia Łukawska Gry deterministyczne niekooperacyjne |
10 IV | Marcin Kulczycki Topologiczna tranzytywność w shiftach rozmieszczeniowych |
27 III | Martha Łącka Pseudometryka Besichovitcha a punkty generyczne miar niezmienniczych Show abstract Oznaczmy przez $M_T(X)$ rodzinę borelowskich miar probabilistycznych niezmienniczych względem ciągłego odwzorowania $T$ działającego na zwartej przestrzeni metrycznej $X$. Wiadomo, że $M_T(X)$ wyposażone w *-słabą topologię jest przestrzenią zwartą. Dla dowolnego punktu $x$ przestrzeni $X$ niech $m(x,n)$ oznacza unormowaną sumę delt Diraca w punktach $x, T(x), ... T^{n-1}(x)$. Zdefiniujmy $om(x)$ jako rodzinę wszystkich punktów skupienia ciągu $\{m(x,n)\}_{n\in\mathbb N}$. Podczas referatu pokażemy, że jeśli układ dynamiczny $(X,T)$ spełnia własność AASP (pewną odmianę własności śledzenia pseudoorbit), to dla dowolnego kontinuum (zwartego spójnego i niepustego zbioru) $V$ zawartego w $M_T(X)$ istnieje taki punkt $x$ przestrzeni $X$, że $om(x)=V$. W szczególności oznacza to, że dla każdej miary $\mu$ w $M_T(X)$ istnieje punkt generyczny. W dowodzie wykorzystamy pseudometrykę Besichovitcha. |
20 III | Dominik Kwietniak Własności powracania w układach kodowanych Show abstract Układy kodowane to klasa układów symbolicznych stanowiąca naturalne uogólnienie shiftów soficznych. Wiele
”dobrych” własności tych ostatnich przenosi się na układy kodowane, ale nie jest to regułą. W czasie referatu
omówię związki między różnymi rodzajami powracania (tranzytywność, mieszanie, specyfikacja) dla układów
kodowanych. Referat będzie częściowo oparty na wynikach z preprintu, którego współautorami są J. Epperlein
i P. Oprocha. |
13 III | Paweł Franczak, Maciej Chrostowski Kryteria permanencji (c.d.) |
6 III | Paweł Franczak, Maciej Chrostowski Kryteria permanencji (c.d.) |
27 II | Paweł Franczak, Maciej Chrostowski Kryteria permanencji (c.d.) |
23 I | Benjamin Weiss Ergodic theory of actions of countable groups |
23 I | Katarzyna Leniar Kryteria permanencji |
16 I | Katarzyna Leniar Kryteria permanencji |
9 I | Katarzyna Leniar Kryteria permanencji |
9 I | Sylwia Szewc Persystencja w układach dynamicznych |
19 XII | Sylwia Szewc Persystencja w układach dynamicznych |
12 XII | Klaudiusz Wójcik Relacje Dolda i przekształcenie dwumianowe |
5 XII | Jarosław Duda Ruelle-Bowen random walk w modelach dyfuzyjnych i innych zastosowaniach Prezentacja Show abstract Maximal Entropy Random Walk (MERW), zwany także Ruelle-Bowen random walk, oznacza wybór najbardziej
losowego z wszystkich dostępnych błądzeń losowych: maksymalizującego produkcję entropii. Podczas
gdy standardowe modele dyfuzyjne okazują się być często rozbieżne z przewidywaniami mechaniki kwantowej
(różne własności lokalizacyjne), modele oparte na MERW pozwalają zrozumieć i naprawić tą rozbieżność: ich
stacjonarna gęstość prawdopodobieństwa jest identyczna jak dla kwantowego stanu podstawowego. Opowiem
pokrótce też o innych zastosowaniach MERW: do maksymalizacji pojemności kanału informacyjnego przy zadanych
więzach, oraz do analizy złożonych grafów, np. jako alternatywa dla PageRank lub do wyszukiwania
wyróżniających się obszarów obrazka. |
28 XI | Antoni Leon Dawidowicz Chaos i stabilność dla układów dynamicznych w przestrzeniach funkcyjnych |
21 XI | - Semiarium (w ramach Wandering Seminar) odbyło się na Wydziale Matemtayki Stosowanej AGH |
14 XI | Antoni Leon Dawidowicz Chaos i stabilność dla układów dynamicznych w przestrzeniach funkcyjnych |
7 XI | Marcin Kulczycki Properties of dynamical systems with the asymptotic average shadowing property |
31 X | - Semiarium (w ramach Wandering Seminar) odbyło się na Wydziale Matemtayki Stosowanej AGH |
24 X | Karol Gryszka Topologiczne własności zbiorów granicznych Show abstract It is well known that the topology and dynamics of limit sets play its role in the theory
and applications of dynamical systems. In first part of my talk I will briefly describe different kinds
of limit sets, their topological, dynamical properties and mutual connections.
Second part will be devoted to my recent work on a new criterium implying that the $\omega$-limit set,
under some assumption on the space and asymptotic properties of an orbit, can be a topological
continuum. As a result we can also prove, that the limit set is in fact some sort of attractor. |
17 X | Dominik Kwietniak On intrinsic ergodicity of weakly specified, almost specified shift spaces Show abstract A shift space is intrinsically ergodic if it has a unique measure of maximal entropy
(MME). Bowen introduced the specification property and proved that the shift spaces with the
specification property are intrinsically ergodic. Pfister and Sullivan generalized Bowen’s notion and
defined the $g$-almost product property, later coined the almost specification property by Thompson.
Another generalization of specification is due to Marcus who introduced the weak specification property.
I will describe a family of shift spaces showing that neither weak nor almost specification imply
uniqueness of the MME, along with some other results about almost specified dynamical systems.
I will relate these results to the work of Climenhaga and Thompson on intrinsic ergodicity of some
shift spaces. Time permits I will discuss a related problem of intrinsic ergodicity of the subordinate
shift spaces.
The talk is based on a joint work with Piotr Oprocha (AGH Kraków) and Michał Rams (IM PAN
Warszawa). |
10 X | Wojciech Kozłowski Niejawne procesy iteracyjne w przestrzeniach Banacha |
13 VI | Krzysztof Hajos Conley index and tubular neighborhoods |
30 V | Martha Łącka Entropia topologiczna a wymiar Hausdorffa |
16 V | Frank Weilandt Conley index of Poincare maps |
9 V | Frank Weilandt Conley index of Poincare maps |
11 IV | Klaudiusz Wójcik Własności ciągu liczb Lefschetza |
4 IV | Roman Srzednicki Indeks Conley'a odwzorowania Poincarego |
28 III | Piotr Kamieński Metody probabilistyczne w problemach małych mianowników Show abstract W wielu zagadnieniach w teorii układów dynamicznych istotną rolę pełnią arytmetyczne własności
pewnych liczb związanych z tymi układami. W referacie przedstawię kilka twierdzeń ilustrujących
to zjawisko (twierdzenie Siegela o linearyzacji perturbacji obrotu na płaszczyźnie zespolonej, wyniki
teorii KAM) oraz pokażę jak można stosować metody probabilistycznej teorii liczb, aby uzyskać
ilościowe wersje tych rezultatów. |
21 III | Piotr Kamieński Metody probabilistyczne w problemach małych mianowników |
14 III | Cezary Olszowiec Układy lokalnie gładkie - zagadnienia fizyczne |
7 III | Karol Gryszka Okres minimalny w równaniach różniczkowych(wg pracy M. Nieuwenhuisa, J. Robinsona i S. Steinerbergera) Show abstract Niech $x$ będzie niestałym rowiązaniem $T$-okresowym autonomicznego równania różniczkowego $x'=f(x)$, gdzie $f\colon X\to X$ jest lipschitzowska ze stałą $L$ oraz $X$ jest przestrzenią Banacha. Wcześniejsze
wyniki pokazują, że $LT\geq 6$ dla dowolnej przestrzeni Banacha oraz $LT\geq 2\pi$ dla przestrzeni Hilberta.
W czasie seminarium omówię wzmocnienie powyższych wyników. W szczególności, dla ściśle
wypukłych przestrzeni Banacha zachodzi $LT>6$. Ponadto udowodnię, że dla dowolnej przestrzeni Banacha zachodzi $LT\geq 6$. Następnie pokażę, jak ze specjalnej postaci nierówności Wirtingera na przestrzeniach $W^{1,p}_{\text{per}}([0,T],X)$,
gdzie $X =l^p(\mathbb R^n)$ lub $X=L^p(M,\mu)$ można wskazać przedział wartości
$p$, dla którego $LT>6$. |
28 II | Martha Łącka Złożoność topologiczna układu dynamicznego(wg pracy F. Blancharda. B. Hosta i A. Maassa) Show abstract Złożoność topologiczna układu dynamicznego względem pokrycia $\mathcal U$ to minimalna liczba elementów
podpokrycia pokrycia $\bigvee_{i=0}^{n-1}T^{-i}\mathcal U$ (czyli jest to funkcja, której wykładniczy wzrost równoważny
jest dodatniej entropii topologicznej). Podczas seminarium omówimy kilka własności złożoności topologicznej.
Pokażemy między innymi, że układ ma ograniczoną (czyli od pewnego miejsca stałą)
złożoność topologiczną wtedy i tylko wtedy, gdy jest równociągły oraz omówimy związek pomiędzy
złożonością a mieszaniem i chaosem. |
24 I | Michael Hochman Dimension of self-similar sets with overlaps |
17 I | Marcin Kulczycki Nick Bostrom's simulation argument |
10 I | Dominik Kwietniak Kombinatoryczne podejscie do niezaleznosci ukladow symbolicznych |
20 XII | Cezary Olszowiec Bounded density shifts and beta shifts |
13 XII | Roman Srzednicki Gradientowe homotopie |
6 XII | Roman Srzednicki Gradientowe homotopie |
29 XI | Michał Rams Teoria fraktali - perkolacje fraktalne |
15 XI | Cezary Olszowiec Bounded density shifts(wg B.Stanley'a) |
8 XI | Cezary Olszowiec Bounded density shifts(wg B.Stanley'a) |
18 X | Dominik Kwietniak O sympleksie miar niezmienniczych pewnych subshiftów Show abstract Przedstawię warunki implikujące, że sympleks miar niezmienniczych spełniającego je układu
dynamicznego jest sympleksem Poulsena. Warunki te uogólniają własność specyfikacji. Podam także przykłady
zastosowań. |
11 X | Marcin Kulczycki Nieodwracalne odwzorowania minimalne Show abstract W trakcie referatu przedstawione zostały wyniki zawarte w pracy “Noninvertible minimal maps” S. Kolyady,
L. Snohy i S. Trofimczuka opublikowanej w Fund. Math. 168 (2001). |
4 X | Jakub Maksymiuk Rozpiętość kohomologiczna LS-indeksu i rozwiązania okresowe układów Hamiltonowskich Show abstract W referacie zostało zaprezentowane pojęcie rozpiętości kohomologicznej LS-indeksu Conleya. Zostały podane
twierdzenia o istnieniu rozwiązań okresowych układów hamiltonowskich udowodnione z pomocą tego pojęcia.
Została także przedstawiona metoda rachunkowa służąca do wyznaczania LS-indeksu punktów krytycznych
funkcjonału stowarzyszonego z układami hamiltonowskimi. |
14 VI | Piotr Kamieński |
7 VI | Magdalena Nowak Topologiczne atraktory iterowanych układów funkcyjnych |
31 V | Andrzej Tomski Stochastycznie zaburzone układy dynamiczne - procesy kawałkami deterministyczne |
24 V | Keith Burns A simple proof of Sharkovsky's theorem Show abstract A simplified proof of the Sharkovsky’s theorem has been presented. |
17 V | Michał Misiurewicz Półsprzężenia z przekształceniami o stałym nachyleniu |
26 IV | Marcin Mazur O gęstości własności silnego śledzenia granicznego (s-limit shadowing) |
19 IV | Roman Srzednicki Isolated invariant sets for periodic differential equations |
12 IV | Marcin Kulczycki O istnieniu zbiorów minimalnych w zbiorach o singletonowym brzegu (wg J.-H. Mai) Show abstract Zreferowano następujący wynik z pracy J.-H. Mai:
jeśli $X$ jest przestrzenią topologiczną, $f\in C(X,X)$, a $Y\subset X$ jest zbiorem zwartym takim, że $\partial_XY=\{v\}$ i $f(v)\in Y$, to w $Y$ istnieje zbiór minimalny $f$. |
5 IV | Tomasz Downarowicz Entropia w układach dynamicznych |
22 III | Dominik Kwietniak On the simplex of invariant measures of beta shifts |
15 III | Tomasz Downarowicz Entropia w układach dynamicznych |
8 III | Dominik Kwietniak On the simplex of invariant measures of beta shifts |
1 III | Liliana Klimczak Pewna wersja twierdzenia o przejściu przez przełęcz i jej zastosowania do układów hamiltonowskich (wg książki P.H. Rabinowitza) |
25 I | Roman Srzednicki O wyznaczaniu indeksu Conley'a odwzorowania Poincarego |
18 I | Marcin Kulczycki Coupled-expanding maps (wg wspólnego artykułu z P. Oprochą) |
11 I | Justyna Ogorzały Chaos in a Discrete Delay Population Model |
4 I | Magdalena Nowak Prawo Benforda |
21 XII | Karol Gryszka Okres asymptotyczny i jego własności Show abstract Podczas referatu zdefiniowałem okres asymptotyczny orbity jako możliwe uogólnienie klasycznego okresu dla orbit
w układach dynamicznych z czasem ciągłym. Intuicyjnie okres asymptotyczny ma opisywać własności orbit, których
dodatnimi zbiorami granicznymi są orbity okresowe lub punkty stałe. Definicja ta pokrywa się również z klasycznym
okresem dla orbit okresowych.
Przestawiłem podstawowe własności powyższego pojęcia. Między innymi pokazałem, że orbity o zerowym okresie
asymptotycznym to dokładnie orbity, których zbiory omega-graniczne są jednopunktowe. Omówiłem również przypadek,
gdy zbiór omega-graniczny jest orbitą okresową lub gęstą, a okres asymptotyczny jest skończony. |
14 XII | Dominik Kwietniak Powrót Poincarégo |
7 XII | Dominik Kwietniak Własność specyfikacji i śledzenia w układach dynamicznych |
30 XI | Roman Srzednicki O bifurkacji Hopfa |
30 XI | Dominik Kwietniak Własność specyfikacji i śledzenia w układach dynamicznych |
23 XI | Cezary Olszowiec Global topological properties of the Hopf bifurcation (wg J. Sanjurjo) Show abstract W trakcie referatu przedstawione zostaną globalne własności bifurkacji Hopfa. Rozważać będziemy trzy sytuacje:
bifurkacje z punktu, orbity okresowej a także ogólniej z dowolnego atraktora, podczas której powstaje nowa
rodzina atraktorów. Do badania własności tych ostatnich będziemy używać teorii kształtu Borsuka - uogólnienia
teorii homotopii.
Na samym początku referatu zostaną podane podstawe definicje i własności dotyczące kategorii i morfizmów
kształtu, a także zaprezentowane inne podejście do tej teorii - klasyczne wg. Borsuka. |
16 XI | Klaudiusz Wójcik Własności dualnego ciągu liczb Lefschetza |
16 XI | Marcin Kulczycki Na temat pewnego równania fizycznego |
16 XI | Roman Srzednicki Indeks Conley'a dla potoków z czasem dyskretnym |
9 XI | Łukasz Struski Ścisła lokalizacja wartości i wektorów własnych |
26 X | Andrzej Tomski O minimalnym atraktorze stochastycznym |
19 X | Dominik Kwietniak Teoria ergodyczna w teorii liczb (raport z konferencji w Oberwolfach) |
12 X | Marcin Kulczycki Niebijektywne odwzorowania minimalne na solenoidach Show abstract Kontinua metryczne zostały podzielone na cztery grupy w zależności od istnienia homeomorfizmów minimalnych
i ciągłych niehomeomorfizmów minimalnych. Przedstawione zostały przykłady przestrzeni należących do
każdej z klas. Udowodnione zostało, że na solenoidach istnieją minimalne niehomeomorfizmy ciągłe. |
5 X | Dominik Kwietniak Zbiory sum w grupach mierzalnych |
15 VI | Dawid Tarłowski Stabilność operatorów Foiasa i optymalizacja Show abstract Problem zbieżności Markowowskich procesów optymalizacyjnych (z czasem dyskretnym) $X_t$ zadanych rekurencyjnym
równaniem postaci $X_{t+1}=T_t(X_t,Y_t)$, gdzie $Y_t$, $t=0,1,\ldots$,
to zmienne losowe niezależne, można
sprowadzić do badania stabilności związanych z tym równaniem operatorów Foiasa, które zadają pseudo–układ
dynamiczny na przestrzeni miar probabilistycznych na dziedzinie optymalizowanej funkcji. Celem referatu jest
prezentacja oraz dowód ogólnego twierdzenia podającego warunki wystarczające by zbiór miar probabilistycznych
skupionych na ekstremach globalnych optymalizowanej funkcji był globalnym atraktorem. Głównym narzędziem
jest funkcja Lapunowa. |
8 VI | Marcin Kulczycki Uogólniony okres i jego własności Show abstract Przedstawiono propozycję uogólnienia pojęcia okresu na punkty nieokresowe, ale o regularnym granicznym
zachowaniu. Przedyskutowano podstawowe własności nowego pojęcia. Poruszono problem związku prędkości
wzrostu ilości orbit okresowych i prędkości wzrostu ilości orbit o skończonym uogólnionym okresie. |
8 VI | Marek Ostrowski Extreme growth rates of periodic orbits in flows Show abstract Ekstremalne tempo wzrostu orbit okresowych jest stałe dla równoważnych potoków bez punktów stałych.
Istnieje jednak para równoważnych przepływów z punktami stałymi taka, że tempo wzrostu orbit okresowych
jednego potoku jest nieskończone, a drugiego równe zero. W pracy W. Suna i C. Zhanga przedstawiona jest
konstrukcja pary równowżnych potoków o podanych własnościach. |
1 VI | Jakub Bielawski Beyond the Li-Yorke definition of chaos (wg pracy P. Kloedena i Z. Li) |
25 V | Konrad Ungeheuer Własności zbioru punktów łańcuchowo powracających (chain recurrent) dla typowego (w sensie Baire'a) odwzorowania własnego wielościanu |
18 V | Justyna Signerska Analiza modelu dynamiki neuronu z okresową i prawie okresową funkcją wejścia |
11 V | Marek Ostrowski Extreme growth rates of periodic orbits in flows |
27 IV | Liliana Klimczak Asymptotic stability of forced oscillations emanating from a limit cycle (wg O. Makarenkova i R. Ortegi) Show abstract Praca O. Makarenkova i R. Ortegi Asymptotic stability of forced oscillations emanating from a limit cycle
(JDE 2011, 39-52) poświęcona jest bifurkacjom cyklu granicznego w układach analitycznych oraz warunkom
koniecznym i wystarczającym na asymptotyczną stabilność powstających rozwiązań okresowych - z wykorzystaniem
metod topologicznych (stopień topologiczny). Podczas referatu przedstawiono główny wynik pracy,
w oparciu o przykład podany przez autorów. |
20 IV | Łukasz Chołda On forced fast oscillations for delay differential equations on compact manifolds |
13 IV | Matus Dirbak Extensions of flows by continuous cocycles Show abstract Let $\mathcal F$ be a flow given by a continuous action of a locally compact group $\Gamma$ on a compact space $X$. We are interested in the existence of a continuous
cocycle $\mathcal C$ over $\mathcal F$ which takes its values in a given Polish group $G$ and satisfies
a given property ((weak) topological ergodicity, weak topological mixing, a
prescribed set of essential values etc.). We give sufficient conditions for such
a cocycle $\mathcal C$ to exist and apply the obtained results to construct minimal
fibre-preserving flows on fibre bundles. |
30 III | Łukasz Chołda On forced fast oscillations for delay differential equations on compact manifolds |
16 III | Marcin Kulczycki Brak wynikań pomiędzy ASP i AASP w przypadku niezwartym Show abstract Przedstawione zostały przykłady ilustrujące, że bez założenia zwartości przestrzeni nie ma wynikań w żadną
stronę pomiędzy własnością śledzenia w średniej i własnością asymptotycznego śledzenia w średniej. Zostało
udowodnione natomiast, że przy założeniu zwartości przestrzeni AASP implikuje ASP. |
9 III | Łukasz Chołda On forced fast oscillations for delay differential equations on compact manifolds |
2 III | Marcin Górecki Charakteryzacja odwzorowań Lefschetza bez punktów okresowych na wybranych rozmaitościach (wg J. Guirao i J. Libre) |
24 II | Andrei Pranevich First integrals of Lappo-Danilevsky differential systems |
2 II | Jon Aaronson Distributional limits in ergodic theory |
2 II | Maryam Hosseini Shadowing and sub-shadowing |
27 I | Marta Stefankova Chaos w dyskretnych układach dynamicznych |
20 I | Wojciech Kryszewski O twierdzeniu Kreina-Rutmana Show abstract Podczas referatu omówiłem zagadnienia związane z twierdzeniem Perrona-Frobeniusa i jego nieskończenie
wymiarowymi uogólnieniami (twierdzenie Kreina-Rutmana, Bonsalla i Nussbauma), ze szczególnym uwzględnieniem
założenia styczności (zastępującego niezmienniczość stożka). Wiele uwagi poświęciłem wersjom tego
twierdzenia w przypadku operatorów nieograniczonych, generujących silnie ciągłą półgrupę na przestrzeni Banacha
wyposażonej w strukturę karty banachowskiej oraz dyskusję tzw. nierówności Kato w relacji do założenia
styczności. |
13 I | Piotr Oprocha Powracanie, mieszanie i chaos |
16 XII | Andrzej Tomski Persystencja punktów stałych a teoria stopnia Show abstract Zostały przypomniane pojęcia stopnia topologicznego oraz persystencji jedynego punktu stałego w sperturbowanym
układzie autonomicznym. Dla lipschitzowskich pól wektorowych otrzymujemy pełną charakteryzację
persystencji w wymiarze 2, jednak dla wyższych wymiarów problem pozostaje otwarty. Pokazano również i
zilustrowano przykładami związki z istnieniem punktów izolowanych oraz odpowiednio gładkich dyfeotopii usuwających
punkty stałe. Dla pola wektorowego ciągłego do pokazania, że punkt stały nie persystuje wystarczy,
by stopień pola wynosił zero. Omówiono ideę dowodu, w którym zwraca uwagę wykorzystanie twierdzenia
Kupki-Smale’a. |
9 XII | Andrzej Tomski Persystencja punktów stałych a teoria stopnia Show abstract Zostały przypomniane pojęcia stopnia topologicznego oraz persystencji jedynego punktu stałego w sperturbowanym
układzie autonomicznym. Dla lipschitzowskich pól wektorowych otrzymujemy pełną charakteryzację
persystencji w wymiarze 2, jednak dla wyższych wymiarów problem pozostaje otwarty. Pokazano również i
zilustrowano przykładami związki z istnieniem punktów izolowanych oraz odpowiednio gładkich dyfeotopii usuwających
punkty stałe. Dla pola wektorowego ciągłego do pokazania, że punkt stały nie persystuje wystarczy,
by stopień pola wynosił zero. Omówiono ideę dowodu, w którym zwraca uwagę wykorzystanie twierdzenia
Kupki-Smale’a. |
2 XII | Karol Gryszka O pewnej realizacji kongruencji Dolda Show abstract Jedną z podstawowych własności ciągu indeksów iteracji odwzorowania ciągłego $f\colon X\to X$ (dla $X$-zwartych
ANR-ów) jest spełnianie relacji Dolda. W związku z tym powstaje naturalne pytanie, czy jeśli zadany z góry ciąg liczb
całkowitych spełnia relacje Dolda, to potrafimy znaleźć odwzorowanie ciągłe, którego indeksy iteracji realizują dany
ciąg?
Celem referatu jest przedstawienie idei dowodu twierdzenia Graffa, Nowaka-Przygodzkiego opisującego wszystkie
możliwe ciągi indeksów realizowalne przez odwzorowania klasy $\mathcal C^1$
dla odwzorowań $\mathbb R^3$
w siebie. Zaprezentowana idea
konstrukcji (z wykorzystaniem specjalnych typów dynamiki) posłuży następnie do naszkicowania schematu budowy
homeomorfizmu $f\colon\mathbb R^3\to\mathbb R^3$
zachowującego orientację, którego ciąg indeksów iteracji pokrywa się z zadanym a priori
ciągiem liczb całkowitych, oraz dla którego $\{0\}$ jest izolowanym stabilnym punktem stałym. |
25 XI | Jerzy Jezierski Minimalna liczba punktów periodycznych odwzorowań gładkich |
18 XI | Dominik Kwietniak Uogólniona specyfikacja i uogólniony shadowing |
4 XI | Jacek Tabor Alternatywne podejście do entropii |
28 X | Piotr Oprocha Powracanie, mieszanie i chaos |
21 X | Klaudiusz Wójcik O pewnej formule na indeks punktu stałego |
14 X | Magdalena Nowak Zęby rekina, czyli 1-wymiarowe kontinuum, które nie jest homeomorficzne z atraktorem żadnego IFS Show abstract Podczas referatu przedstawiony został problem istnienia lokalnie spójnego kontinuum skończonego wymiaru,
które nie jest atraktorem żadnego iterowanego systemu funkcyjnego (IFS). W odpowiedzi na powyższe pytanie
skonstruowaliśmy 1-wymiarowe Peano kontinuum, zwane ”zębami rekina”, które nie może być homeomorficzne
z atraktorem IFS. Dowód opiera sie na własnościach S-wymiaru, ktory mozemy zdefiniować dla każdego Peano
kontinuum. Udowodnione zostało, że atraktory IFS mają skończony S-wymiar, natomiast wspomniany przykład
”zębów rekina” jest nieskończenie wymiarowy. |
7 X | Marcin Kulczycki O tym, co nie może być atraktorem IFSu (wspólna praca z Magdaleną Nowak) Show abstract Opisane zostały trzy przykłady kontinuów na płaszczyźnie, które nie są atraktorami żadnego iterowanego
systemu funkcyjnego (dwa z nich były lokalnie spójne, a w tym jeden, który również nie jest atraktorem żadnego
systemu słabych kontrakcji).
Wprowadzone zostało pojęcie długości kontinuum i przy jego pomocy wprowadzony został warunek wystarczający
na to, aby kontinuum mogło być włożone homeomorficznie w $\mathbb R^n$ w ten sposób, aby jego obraz nie był
atraktorem żadnego IFSu. |
10 VI | Piotr Kamieński Twierdzenie Nasha-Mosera o lokalnym dyfeomorfizmie Show abstract W referacie przypomniane zostanie klasyczne twierdzenie o lokalnym dyfeomorfizmie (w wersji dla przestrzeni
Banacha), które udowodnimy korzystając z tzw. metody Newtona. Następnie podane zostanie uogólnienie tego
twierdzenia na przypadek przestrzeni funkcji klasy $\mathcal C^{\infty}$ wraz z ideą dowodu. Na koniec sformułujemy abstrakcyjne
twierdzenie Nasha-Mosera korzystając z formalizmu “grzecznych” przestrzeni Frech´eta. Następnie zaprezentowane
zostanie jedno z najbardziej spektakularnych zastosowań twierdzenia Nasha-Mosera — dowód twierdzenia
Nasha o izometrycznym zanurzaniu rozmaitości riemannowskich w przestrzenie euklidesowe. |
3 VI | Piotr Kamieński Twierdzenie Nasha-Mosera o lokalnym dyfeomorfizmie Show abstract W referacie przypomniane zostanie klasyczne twierdzenie o lokalnym dyfeomorfizmie (w wersji dla przestrzeni
Banacha), które udowodnimy korzystając z tzw. metody Newtona. Następnie podane zostanie uogólnienie tego
twierdzenia na przypadek przestrzeni funkcji klasy $\mathcal C^{\infty}$ wraz z ideą dowodu. Na koniec sformułujemy abstrakcyjne
twierdzenie Nasha-Mosera korzystając z formalizmu “grzecznych” przestrzeni Frech´eta. Następnie zaprezentowane
zostanie jedno z najbardziej spektakularnych zastosowań twierdzenia Nasha-Mosera — dowód twierdzenia
Nasha o izometrycznym zanurzaniu rozmaitości riemannowskich w przestrzenie euklidesowe. |
27 V | Dawid Tarłowski Zbieżność globalna stochastycznych algorytmów optymalizacji |
13 V | Dawid Tarłowski Zbieżność globalna stochastycznych algorytmów optymalizacji |
6 V | Leszek Gasiński Istnienie i jednoznaczność rozwiązań dodatnich dla zagadnienia eliptycznego z p-laplasjanem Show abstract Rozważamy nieliniowe zagadnienie z $p$-laplasjanem oraz warunkiem brzegowym typu Neumanna. Używając
pierwszej wartości własnej $p$-laplasjanu, oraz zakładając monotoniczność prawej strony, podamy warunki
wystarczające i konieczne do istnienia rozwiązania dodatniego rozważanego zagadnienia. |
29 IV | Dawid Tarłowski Zbieżność globalna stochastycznych algorytmów optymalizacji |
15 IV | Piotr Kokocki Stationary solutions and connecting orbits for nonlinear parabolic equations of resonance |
8 IV | Zofia Mączyńska Rigorous numerics for Cahn-Hilliard equation |
1 IV | Wojciech Uss |
18 III | Piotr Kokocki Stationary solutions and connecting orbits for nonlinear parabolic equations of resonance |
11 III | Piotr Zgliczyński O zachowaniu orbit wokół niehiperbolicznego punktu stałego dla rezonansu 3:1 Show abstract Badamy odwzorowanie Henona zachowujące pole
$h(x, y) = R_{\alpha}(x, y − x^2)$, $\alpha=2\pi/3$,
gdzie $R_{\alpha}$ jest obrotem o kąt $\alpha$. Zajmiemy się $\alpha=2\pi/3$ - przypadek rezonansu 3:1.
Omówimy dowód wspierany komputerowo istnienia dynamiki symbolicznej i istnienia ”hiperbolicznego” zbioru
niezmienniczego z intersującymi własnościami:
- niektóre z punktów mają zerowe wykładniki Lapunowa,
- inne mają niezerowe wykładniki Lapunowa,
- a dla jeszcze innych granica w definicji wykładnika Lapunowa oscyluje między zerem i pewną wartością
niezerową.
To jest praca wspólna z Carlesem Simo (Barcelona) i Tomaszem Kapelą. |
4 III | Marek Izydorek Klasy otopii odwzorowań niezmienniczych Show abstract Niech $W$ i $V$ będą reprezentacjami zwartej grupy Liego $G$. Parę $(U, f)$ nazywamy niezmienniczym odwzorowaniem
lokalnym, jeśli $U$ jest otwartym niezmienniczym podzbiorem $W$, $f\colon U\to V$ jest odwzorowaniem niezmienniczym oraz przeciwobraz zera $f^{-1}(0)$ jest zwartym podzbiorem $U$. W zbiorze niezmienniczych odwzorowań
lokalnych wprowadza się relację otopii będącą prosta modyfikacją pojęcia homotopii. Omówimy konstrukcję
pozwalającą na przyporządkowanie każdej parze $(U, f)$ pewnego elementu pierścienia Eulera $U(G)$. W ten
sposób otrzymamy niezmiennik homotopijny (stały na klasach otopii), który jest naturalnym uogólnieniem klasycznego
stopnia topologicznego. Celem badań prowadzonych w tym kierunku jest uzyskanie opisu niektórych
składników prostych stabilnych niezmienniczych grup homotopii sfer.
Wykład oparty jest na pracy P. Bartłomiejczyka, K. Gęby i M. Izydorka Otopy classes of equivariant maps,
J. Fixed Point Theory Appl. 7 (2010), no. 1, 145-160. |
25 II | Piotr Zgliczyński O zachowaniu orbit wokół niehiperbolicznego punktu stałego dla rezonansu 3:1 |
21 I | Wacław Marzantowicz Estimates of the topological entropy from below for continuous self-maps on some compact manifolds |
14 I | Aleksander Czechowski Chaos w odwracających orientację skręcających odwzorowaniach płaszczyzny |
7 I | Wacław Marzantowicz A symmetry of maps implies chaos, i.e. gives infinitely many periodic points |
17 XII | Robert Stańczy Nieliniowy model dyfuzji cząstek oddziaływujących grawitacyjnie |
10 XII | Roman Srzednicki Sphere eversion (wg Smale'a, Morina i Thurstona) |
3 XII | Jakub Bielawski Rozmyte równania różniczkowe - podstawy |
26 XI | Grzegorz Kosiorowski, Klaudiusz Wójcik Segmenty izolujące dla homotopii |
19 XI | Łukasz Struski O przykładzie ekspansywności bez shadowingu |
12 XI | Łukasz Struski O przykładzie ekspansywności bez shadowingu |
5 XI | Magdalena Kiełek Związek entropii topologicznej z wymiarem Hausdorffa |
29 X | Marcin Kulczycki, Dominik Kwietniak Shadowing dla działań grupy R^n |
22 X | Marcin Kulczycki, Dominik Kwietniak Shadowing dla działań grupy R^n |
8 X | Dominik Kwietniak O zastosowaniach przesunięć rozmieszczeniowych |
11 VI | Paweł Feliks Klasyfikacje układów tranzytywnych |
28 V | Michał Jastrzębiec-Bobrowski Kiedy przekształcenie tranzytywne jest chaotyczne? (wg Akina, Auslandera i Berga) |
14 V | Marcin Kulczycki Dynamika foliacji |
30 IV | Dominik Kwietniak Dynamika shiftów rozmieszczeniowych |
23 IV | Eugeniusz Dymek Period three implies stable five - o stabilności okresów na odcinku i ilości funkcji z okresami |
16 IV | Łukasz Wojtala The method of Stretching Along the Paths (SAP) |
9 IV | Łukasz Wojtala The method of Stretching Along the Paths (SAP) |
9 IV | Andrzej Turek A corollary of the Poincare-Bendixon theorem and periodic canards |
19 III | Andrzej Turek A corollary of the Poincare-Bendixon theorem and periodic canards |
12 III | Magdalena Kiełek Zbiory Cantora jako atraktory iterowanych systemów funkcyjnych |
5 III | Anna Sojka Topologiczne podejście do istnienia rozwiązań dla nieliniowych równań różniczkowych z kawałkami stałym argumentem |
26 II | Dominik Kwietniak On transitivity, sensitivity and chaos for maps of graphs and some other spaces |
22 I | Piotr Oprocha Rekurencja produktowa i rozłączność |
15 I | Przemysław Spurek Dynamika symboliczna dla układów niehiperbolicznych |
8 I | Michał Marek Stability and basins of attraction of invariant surface |
18 XII | Michał Marek Stability and basins of attraction of invariant surface |
11 XII | Sławomir Rybicki Pierścień Eulera torusa i jego znaczenie w analizie nieliniowej |
4 XII | Marcin Górecki Twierdzenie o antyokresowych oscylacjach LaSalla |
20 XI | Jakub Bielawski Granice odwrotne i ich zastosowania w ekonomii |
13 XI | Jakub Bielawski Granice odwrotne i ich zastosowania w ekonomii |
30 X | Jakub Bielawski Granice odwrotne i ich zastosowania w ekonomii |
23 X | Dominik Kwietniak On topological entropy of compact invariant subsets of real line maps |
16 X | Dominik Kwietniak On topological entropy of compact invariant subsets of real line maps |
9 X | Grzegorz Kosiorowski Indeks pola wektorowego w równaniach różniczkowo-algebraicznych |
2 X | Grzegorz Kosiorowski Indeks pola wektorowego w równaniach różniczkowo-algebraicznych |
29 V | Jakub Bielawski Połączone odwzorowania przekrętu generujące dynamikę chaotyczną w układzie drapieżnik - ofiara |
22 V | Eugeniusz Dymek Rozwiązania układów nieliniowych ograniczone "pod potencjałem zmiennym" - - istnienie, jedyność i szczególne przypadki |
15 V | Tomasz Łukowski Uogólnienia pojęcia okresowości (wg T. Caraballo i D. Chebona) |
24 IV | Anna Sulima Indeks Conleya dla nieciągłych pól wektorowych |
17 IV | Anna Sulima Indeks Conleya dla nieciągłych pól wektorowych |
3 IV | Anna Gierzkiewicz Homologie zbioru orbit łączących pary atraktor - repeler |
20 III | Anna Gierzkiewicz Homologie zbioru orbit łączących pary atraktor - repeler |
13 III | Dominik Kwietniak Wilk i zając |
6 III | Jan Jabłoński Fixed point indices and invariant periodic set of holomorphic system |
27 II | Marcin Kulczycki Liczba rozcinania grafu |
16 I | Anna Sojka On the growth of the number of periodic points for smooth self-maps of a compact manifold |
9 I | Pau Roldán Arnold's mechanism of diffusion in the spatial circular Restricted Three Body Problem |
19 XII | Łukasz Struski Fixed points and stability in neutral differential equations with variable delays |
12 XII | Łukasz Struski Fixed points and stability in neutral differential equations with variable delays |
5 XII | Piotr Kamieński Losowe wersje twierdzenia Szarkowskiego |
28 XI | Grzegorz Kosiorowski Okna topologiczne i zagadnienie luk w układach hamiltonowskich |
21 XI | Maciej Capiński Topologiczny dowód istnienia rozmaitości normalnie hiperbolicznej |
14 XI | Maciej Capiński Topologiczny dowód istnienia rozmaitości normalnie hiperbolicznej |
7 XI | Grzegorz Kosiorowski Okna topologiczne i zagadnienie luk w układach hamiltonowskich |
31 X | Marcin Mazur Hiperboliczność obliczeniowa |
24 X | Jacek Tabor O funkcjach lokalnie wypukłych |
17 X | Marcin Kulczycki Asymptotic Average Shadowing Property - nowe wyniki |
10 X | Dominik Kwietniak Hipoteza Ye i hipotezy pokrewne |
13 VI | Dominik Kwietniak Proste reguły indukujące ekstremalnie skomplikowaną dynamikę |
6 VI | Jan Kisyński (Lublin) Liniowe różniczkowo-algebraiczne układy równań |
30 V | Krzysztof Putyra Uogólnienie homologii Khovana |
23 V | Monika Machnik Stroboscopical property, equicontinuity and weak mixing |
25 IV | Jan Jabłoński A note on the dynamics of an oscillator in the presence of strong friction (wg H. Amanna i J. I. Diaza) |
18 IV | Anna Gierzkiewicz O istnieniu porządnych bloków izolujących |
11 IV | Eugeniusz Dymek Topologicznie o twierdzeniu Ważewskiego i niestabilności w układach hamiltonowskich |
11 IV | Anna Gierzkiewicz O istnieniu porządnych bloków izolujących |
4 IV | Eugeniusz Dymek Topologicznie o twierdzeniu Ważewskiego i niestabilności w układach hamiltonowskich |
28 III | Patrycja Chowaniec Model Kermacka-McKendricka i jego uogólnienia |
14 III | Sławomir Kotowski Attractors for dynamical systems in topological spaces |
7 III | Marcin Kulczycki Asymptotic Average Shadowing Property |
29 II | Krzysztof Wesołowski Nieliniowe problemy początkowe Cauchy'ego i bazy Schaudera |
25 I | Klaudiusz Wójcik Punkty okresowe odwzorowania Poincarego - metoda segmentów izolujących |
18 I | Łukasz Struski Topological horseshoes |
11 I | Łukasz Struski Topological horseshoes |
4 I | Elżbieta Sowa Katarzyna Asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functions |
21 XII | Grzegorz Kosiorowski Segmenty izolujące i funkcje wiodące Krasnosielskiego |
14 XII | Monika Machnik Repelery i zbiory splątane w ogólnych przestrzeniach topologicznych |
7 XII | Monika Machnik Repelery i zbiory splątane w ogólnych przestrzeniach topologicznych |
30 XI | Jakub Bielawski Cone-fields, domination and hyperbolicity |
23 XI | Jakub Bielawski Cone-fields, domination and hyperbolicity |
16 XI | Piotr Oprocha Dynamika na przestrzeni śladów nieskończonych |
9 XI | Piotr Oprocha Dynamika na przestrzeni śladów nieskończonych |
26 X | Łukasz Lach Rachunek wariacyjny dla entropii topologicznej |
19 X | Dominik Kwietniak Entropia odwzorowań z dziurami (wg M. Misiurewicza) |
12 X | Grzegorz Kosiorowski Zwartość zbioru orbit ograniczonych |
5 X | Jacek Tabor O wymiarze atraktora dla IFS-ów |
15 VI | Zuzanna Szancer, Michał Szancer A generalization of Bendixson's criterion |
1 VI | Marcin Radwański Zbieżność nieautonomicznych algorytmów ewolucyjnych |
25 V | Anna Bistroń Stabilność ruchu w semiukładach dynamicznych |
18 V | Marcin Muraszewski, Sławomir Kotowski Dynamika odwzorowań solenoidów homotopijnych identyczności |
27 IV | Paweł Omietański, Piotr Rosłanowski Some dynamical properties of continuous semi-flows having topological transitivity |
20 IV | Paweł Omietański, Piotr Rosłanowski Some dynamical properties of continuous semi-flows having topological transitivity |
13 IV | Paweł Omietański, Piotr Rosłanowski Some dynamical properties of continuous semi-flows having topological transitivity |
30 III | Jacek Tabor O badaniu hiperboliczności |
23 III | Piotr Daszko Remarks on the region of attraction of an isolated invariant set (wg Konstantina Athanassopoulosa) |
16 III | Piotr Daszko Remarks on the region of attraction of an isolated invariant set (wg Konstantina Athanassopoulosa) |
2 III | Piotr Daszko Remarks on the region of attraction of an isolated invariant set (wg Konstantina Athanassopoulosa) |
26 I | Wacław Marzantowicz Metody topologiczne znajdowania punktów okresowych |
19 I | Jakub Bombik Grzegorz Bounded homeomorphisms of the open annulus (wg pracy D.Richesona i J.Wisemana) |
12 I | Jakub Bombik, Grzegorz Kosiorowski Bounded homeomorphisms of the open annulus (wg pracy D.Richesona i J.Wisemana) |
5 I | Małgorzata Józefowicz Integral invariants and limit sets of planar vector fields (wg pracy I.Garcii i D.Shafera) |
5 I | Jakub Bombik, Grzegorz Kosiorowski Bounded homeomorphisms of the open annulus (wg pracy D.Richesona i J.Wisemana) |
15 XII | Małgorzata Józefowicz Integral invariants and limit sets of planar vector fields (wg pracy I.Garcii i D.Shafera) |
8 XII | Agnieszka Twaróg Katarzyna On Conley's fundamental theorem of dynamical systems (wg pracy M.R.Razvana) |
1 XII | Agnieszka Twaróg, Katarzyna Wepsięć On Conley's fundamental theorem of dynamical systems (wg pracy M.R.Razvana) |
1 XII | Jakub Bielawski Agnieszka On the stability of limit cycles for planar differential systems (wg H. Giacominiego i M. Grau) |
24 XI | Jakub Bielawski, Agnieszka Micek On the stability of limit cycles for planar differential systems (wg H. Giacominiego i M. Grau) |
17 XI | Marcin Kulczycki Chaos w sensie Devaney'a dla odwzorowań nieciągłych |
17 XI | Jakub Bielawski, Agnieszka Micek On the stability of limit cycles for planar differential systems (wg H. Giacominiego i M. Grau) |
10 XI | Sławomir Kotowski Equivalence of energy methods in stability theory (wg Petre Birtea i Mircea Puta) |
10 XI | Marcin Kulczycki Chaos w sensie Devaney'a dla odwzorowań nieciągłych |
3 XI | Sławomir Kotowski Equivalence of energy methods in stability theory (wg Petre Birtea i Mircea Puta) |
27 X | Jakub Gubernat Area preserving flows with a dense orbit (na podstawie pracy Habiba Marzougiego) |
20 X | Jakub Gubernat Area preserving flows with a dense orbit (na podstawie pracy Habiba Marzougiego) |
13 X | Dominik Kwietniak Entropia i jej odmiany (na podstawie prac T. Downarowicza) |
9 VI | Marcin Radwański Atraktory w układach nieautonomicznych |
2 VI | Marcin Radwański Atraktory w układach nieautonomicznych |
19 V | Pan Wesołowski Funkcja logistyczna w modelach ekonomicznych |
5 V | Dominik Mielczarek Periodic solutions of ordinary differential equations |
28 IV | Agnieszka Micek Dynamic equations on time scales |
21 IV | Luiza Dąbek O przybliżonym sumowaniu i wzorze sumacyjnym Eulera / Mac-Laurina |
7 IV | Grzegorz Harańczyk Chaotyczne układy dynamiczne w zupełnych przestrzeniach metrycznych (wg pracy Y. Shi i G. Chen) |
31 III | Fryderyk Falniowski General properties of fractal measures |
24 III | Fryderyk Falniowski General properties of fractal measures |
17 III | Anna Bistroń Lemat Butlera-McGehee w semiukładach dynamicznych |
10 III | Piotr Oprocha Dynamiczne własności maszyn Turinga |
3 III | Jacek Tabor O uogólnionej hiperboliczności |
24 II | Jacek Tabor O uogólnionej hiperboliczności |
27 I | Mikołaj Zalewski Dynamika topologiczna maszyn Turinga |
20 I | Mikołaj Zalewski Dynamika topologiczna maszyn Turinga |
13 I | Jakub Bielawski Równania różniczkowe na zbiorach rozmytych |
6 I | Jakub Bielawski Równania różniczkowe na zbiorach rozmytych |
16 XII | Piotr Daszko Limit cycles for a class of polynomial systems and applications wg F. Hanying, X. Rui, L. Quiming i Y. Pinghua |
9 XII | Dominik Kwietniak Dynamika topologiczna odwzorowań indukowanych na hiperprzestrzeniach zbiorów zwartych |
2 XII | Dominik Kwietniak Dynamika topologiczna odwzorowań indukowanych na hiperprzestrzeniach zbiorów zwartych |
25 XI | Tadeusz Nadzieja O pewnych nielokalnych zagadnieniach eliptycznych i parabolicznych |
18 XI | Dominik Kwietniak Dokładny chaos w sensie Devaney'a a entropia topologiczna (wyniki uzyskane wspólnie z M. Misiurewiczem) |
4 XI | Dominik Kwietniak Dokładny chaos w sensie Devaney'a a entropia topologiczna (wyniki uzyskane wspólnie z M. Misiurewiczem) |
28 X | Zofia Mączyńska Shadowing w układach dynamicznych z wielowymiarowym czasem dyskretnym |
21 X | Dominik Mielczarek Periodic solutions of delay differential equations |
14 X | Jarosław Duda Existence of solutions to a paratingent equation with delayed argument |
7 X | Dominik Mielczarek Periodic solutions of delay differential equations |
10 VI | Małgorzata Józefowicz Two kinds of chaos and relations between them (wg M.Lamparta) |
3 VI | Jacek Tabor Shadowing dla odwzorowań wielowartościowych |
13 V | Piotr Oprocha Rozkład spektralny Smale'a dla działań grupy Z^d |
6 V | Piotr Oprocha Rozkład spektralny Smale'a dla działań grupy Z^d |
29 IV | Artur Kornatka Metoda programowania dynamicznego w teorii sterowania |
22 IV | Artur Kornatka Metoda programowania dynamicznego w teorii sterowania |
15 IV | Fryderyk Falniowski Topological dynamics of retarded functional differential equations |
1 IV | Łukasz Kurowski Existence of solutions to second order ordinary differential equations having finite limits at +/- infinity |
18 III | Łukasz Kurowski Existence of solutions to second order ordinary differential equations having finite limits at +/- infinity |
11 III | Anna Bistroń Semiukłady dynamiczne blisko domkniętych ujemnie mocno niezmienniczych zbiorów |
4 III | Anna Bistroń Semiukłady dynamiczne blisko domkniętych ujemnie mocno niezmienniczych zbiorów |
25 II | Piotr Budzyński Reduction of Opial-type inequalities to norm-inequalities |
28 I | Leszek Grzanka Solution matching for a three-point boundary-value problem on a time scale |
21 I | Leszek Grzanka Solution matching for a three-point boundary-value problem on a time scale |
14 I | Grzegorz Harańczyk Entropia shiftów wielowymiarowych |
7 I | Grzegorz Harańczyk Entropia shiftów wielowymiarowych |
17 XII | Zofia Mączyńska Heteroclinic points of multidimensional dynamical systems (David Cheban, Jinquiad Duan, Anatoly Guerco) |
10 XII | Zofia Mączyńska Heteroclinic points of multidimensional dynamical systems (David Cheban, Jinquiad Duan, Anatoly Guerco) |
3 XII | Dominik Kwietniak Zastosowania metod dynamiki zespolonej w dynamice symbolicznej (na podst. artykułu R. Devoneya) |
26 XI | Dominik Kwietniak Zastosowania metod dynamiki zespolonej w dynamice symbolicznej (na podst. artykułu R. Devoneya) |
19 XI | Piotr Oprocha Shadowing w shiftach wielowymiarowych |
5 XI | Piotr Oprocha Shadowing w shiftach wielowymiarowych |
5 XI | Piotr Kościelniak Shadowing dla układów dynamicznych z wielowymiarowym czasem |
29 X | Piotr Kościelniak Shadowing dla układów dynamicznych z wielowymiarowym czasem |
22 X | Dorota Kosturek Twierdzenia o stabilności dla nieliniowych równań różniczkowych z opóźnieniem |
15 X | Dorota Kosturek Twierdzenia o stabilności dla nieliniowych równań różniczkowych z opóźnieniem |
15 X | Dominik Mielczarek Funkcja Lapunowa dla układu równań |
8 X | Dominik Mielczarek Funkcja Lapunowa dla układu równań |
4 VI | Mikołaj Zalewski Różne definicje chaosu |
28 V | Dorota Kosturek, Łukasz Kurowski Uniqueness of slowly oscillating periodic solutions for delayed scalar growth systems |
21 V | Dorota Kosturek, Łukasz Kurowski Uniqueness of slowly oscillating periodic solutions for delayed scalar growth systems |
7 V | Dorota Kosturek, Łukasz Kurowski Uniqueness of slowly oscillating periodic solutions for delayed scalar growth systems |
30 IV | Elżbieta Pliś Monotoniczność trajektorii i remetryzacja przestrzeni fazowej w układach dynamicznych |
23 IV | Fryderyk Falniowski Tworzenie fraktali za pomocą IFS-ów |
16 IV | Małgorzata Józefowicz Podrozmaitości transwersalne |
2 IV | Jacek Tabor O indeksie Conleya dla eliptycznych równań cząstkowych (wg K. Rybakowskiego i J. Tabora) |
26 III | Piotr Oprocha Nowy niezmiennik topologicznego sprzężenia w dynamice symbolicznej |
19 III | Piotr Oprocha Nowy niezmiennik topologicznego sprzężenia w dynamice symbolicznej |
12 III | Artur Kornatka IFS depending on previous transformation |
5 III | Wojciech Słomczyński Najprostsze układy dynamiczne |
27 II | Anatolij K. Prykarpatski Operatory transmutacji Delsarta: struktura i własności topologiczne |
20 II | Igor Kohut (Lviv Polytechnic National University) The differential-symbol method of solving the nonlocal boundary value problem for system of PDEs |
23 I | Anatolij K. Prykarpatski Operatory transmutacji Delsarta: struktura i własności topologiczne |
16 I | Piotr Fijałkowski (Łódź) O pewnej klasie odwzorowań lokalnie odwracalnych i ich zastosowaniach |
9 I | Marcin Kulczycki On adding machines and solenoids |
19 XII | Piotr Fijałkowski (Łódź) O pewnej klasie odwzorowań lokalnie odwracalnych i ich zastosowaniach |
12 XII | Wojciech Kryszewski Twierdzenie Browdera-Ky Fana o punktach stałych i jego uogólnienia |
5 XII | Jarosław Duda Aproksymacja atraktorów w nieautonomicznych układach dynamicznych |
28 XI | Marcin Mazur Nieautonomiczne układy dynamiczne |
14 XI | Marcin Mazur Nieautonomiczne układy dynamiczne |
7 XI | Piotr Kościelniak Typowe własności homeomorfizmów |
31 X | Piotr Kościelniak Typowe własności homeomorfizmów |
24 X | Bernardeta Wójtowicz Proces nauki sieci neuronowej bez nauczyciela z uogólnionymi synapsami Hebbiego |
17 X | Krzysztof Ciesielski Izomorfizmy impulsywnych układów dynamicznych |
10 X | Krzysztof Ciesielski Izomorfizmy impulsywnych układów dynamicznych |
30 V | Dominik Kwietniak Inverse shadowing w otoczeniu zbiorów hiperbolicznych |
23 V | Michal Feckan (Bratysława) Some remarks on the Mielnikov function |
16 V | Dominik Kwietniak Inverse shadowing w otoczeniu zbiorów hiperbolicznych |
9 V | Maria Sanz-Sole (Barcelona) Stochastic waves |
25 IV | Kinga Stolot Homotopijny indeks Conleya dla wielowartościowych dyskretnych układów dynamicznych |
11 IV | Kinga Stolot Homotopijny indeks Conleya dla wielowartościowych dyskretnych układów dynamicznych |
4 IV | Piotr Kościelniak Typowe własności homeomorfizmów |
28 III | Piotr Kościelniak Typowe własności homeomorfizmów |
21 III | Piotr Oprocha Topologiczna tranzytywność sofic shiftów |
14 III | Piotr Oprocha Topologiczna tranzytywność sofic shiftów |
7 III | Artur Kornatka Linear skew product semiflows |
28 II | Artur Kornatka Linear skew product semiflows |
21 II | Sebastian Kaim Teoria równań ewolucyjnych |
24 I | Sebastian Kaim Teoria równań ewolucyjnych |
24 I | Joanna Orewczyk Teoria półgrup w równaniach cząstkowych |
17 I | Joanna Orewczyk Teoria półgrup w równaniach cząstkowych |
10 I | Joanna Orewczyk Teoria półgrup w równaniach cząstkowych |
20 XII | Marek Plich Przestrzenie interpolacyjne i potęgi ułamkowe |
13 XII | Marek Plich Przestrzenie interpolacyjne i potęgi ułamkowe |
6 XII | Mikołaj Zalewski Półgrupy różniczkowe |
29 XI | Mikołaj Zalewski Półgrupy różniczkowe |
22 XI | Bernardeta Wójtowicz Tomasz Liniowe półgrupy |
15 XI | Bernardeta Wójtowicz Tomasz Liniowe półgrupy |
8 XI | Bernardeta Wójtowicz Tomasz Liniowe półgrupy |
25 X | Marcin Kulczycki Specjalna własność pewnego rodzaju układów zachowujących miarę |
18 X | Jacek Tabor O zbiorach granicznych |
11 X | Piotr Zgliczyński Symetrie i relacje nakrywające |
24 V | Marcin Pawłowski Atraktory w semi-układach dynamicznych |
17 V | Joanna Czaplińska Semi-układy dynamiczne w przestrzeniach metrycznych |
10 V | Tomasz Kapela Orbity okresowe w problemie n ciał o równych masach |
26 IV | Igor Kohut (Lviv) Differential-Symbol method of solving boundary value problems for partial differential equations |
19 IV | Dominik Kwietniak Persystencja a zbiory łańcuchowo rekurencyjne, wg B. Garaya |
12 IV | Sebastian J. On Topological Sequence Entropy of Piecewise Monotonic Mappings, wg Jose S. Canovasa |
5 IV | Sebastian J. On Topological Sequence Entropy of Piecewise Monotonic Mappings, wg Jose S. Canovasa |
5 IV | Piotr Oprocha Jednowymiarowe zbiory CR na sferze |
22 III | Piotr Oprocha Jednowymiarowe zbiory CR na sferze |
22 III | Paweł Wilczyński Chaos dystrybucyjny w sophic shiftach |
15 III | Paweł Wilczyński Chaos dystrybucyjny w sophic shiftach |
8 III | Marcin Mazur Kryterium chaosu (wg Kennedy, Kocaka i Yorke'a) |
1 III | Marcin Mazur Kryterium chaosu (wg Kennedy, Kocaka i Yorke'a) |
22 II | Marcin Mazur Kryterium chaosu (wg Kennedy, Kocaka i Yorke'a) |
18 I | Piotr Kościelniak Topologiczna stabilność potoków |
11 I | Tomasz Krawczyk Dynamika symboliczna i grafy |
4 I | Tomasz Krawczyk Dynamika symboliczna i grafy |
21 XII | Joanna Jaroszewska Problem istnienia miar niezmienniczych (tw. Lasoty-Yorke'a) |
14 XII | Joanna Jaroszewska Problem istnienia miar niezmienniczych (tw. Lasoty-Yorke'a) |
7 XII | Paweł Wilczyński Chaos dystrybucyjny w przestrzeni shiftów na 2 symbolach |
30 XI | Bernadeta Wójtowicz Układy dynamiczne na fraktalach |
23 XI | Jacek Tabor Stabilność liniowych układów dynamicznych: współczesne wersje twierdzenia Lapunowa albo historia czterech liczb, na podstawie artykułu J. Banasiaka z Wiadomości Matematycznych |
16 XI | Krzysztof Ciesielski Uogólnienie lematu Spernera |
9 XI | Jacek Tabor O uogólnionych inkluzjach różniczkowych |
26 X | Jacek Tabor O uogólnionych inkluzjach różniczkowych |
19 X | Piotr Zgliczyński Prosty geometryczny dowód istnienia dla równań Naviera-Stokesa na płaszczyźnie z okresowymi warunkami brzegowymi |
12 X | Piotr Zgliczyński Prosty geometryczny dowód istnienia dla równań Naviera-Stokesa na płaszczyźnie z okresowymi warunkami brzegowymi |
5 X | Piotr Zgliczyński Prosty geometryczny dowód istnienia dla równań Naviera-Stokesa na płaszczyźnie z okresowymi warunkami brzegowymi |
1 VI | Tomasz Wójtowicz Zasadnicze twierdzenie algebry i teoria złożoności |
25 V | Marcin Pawłowski Trajektorie gęste układów dynamicznych |
18 V | Jarosław Górnicki Punkty stałe odwzorowań jednostajnie Lipschitzowskich |
11 V | Dominik Kwietniak Persystencja w układach biologicznych |
27 IV | Aleksander Urbański Twierdzenie Goodwyna o entropii |
20 IV | Piotr Oprocha Chaos wg Li i Yorke'a |
20 IV | Aleksander Urbański Twierdzenie Goodwyna o entropii |
6 IV | Marcin Mazur Własności typowe układów dynamicznych o strukturze hiperbolicznej |
23 III | Andre Ran Nonlinear matrix equations |
16 III | Jacek Tabor Równania różniczkowe w przestrzeniach metrycznych |
9 III | Paweł Wilczyński Tolerancyjna stabilność, wg F. Takensa |
2 III | Paweł Wilczyński Tolerancyjna stabilność, wg F. Takensa |
30 II | Marcin Mazur Własności typowe układów dynamicznych o strukturze hiperbolicznej |
23 II | Paweł Wilczyński Tolerancyjna stabilność, wg F. Takensa |
19 I | Klaudiusz Wójcik Dynamika symboliczna dla nieautonomicznych okresowych równań różniczkowych zwyczajnych |
12 I | Anna Bistroń Zbiory minimalne w układach dynamicznych na lokalnie zwartych przestrzeniach metrycznych |
5 I | Anna Bistroń Zbiory minimalne w układach dynamicznych na lokalnie zwartych przestrzeniach metrycznych |
15 XII | Marcin Kulczycki Endomorfizmy układów ekspansywnych na zwartych przestrzeniach i POTP, wg Masakazu Nasu |
8 XII | Marcin Kulczycki Endomorfizmy układów ekspansywnych na zwartych przestrzeniach i POTP, wg Masakazu Nasu |
1 XII | Marcin Kulczycki Endomorfizmy układów ekspansywnych na zwartych przestrzeniach i POTP, wg Masakazu Nasu |
2 VI | Monika Czaja Homeomorfizmy granicy odwrotnej o entropii topologicznej równej zero |
26 V | Lesław Ruchała On isolating blocks and index pairs consisting of ENRs |
19 V | Lesław Ruchała On isolating blocks and index pairs consisting of ENRs |
5 V | Marcin Pawłowski Zbiory łańcuchowo rekurencyjne, atraktory i wybuchy |
28 IV | Marcin Pawłowski Zbiory łańcuchowo rekurencyjne, atraktory i wybuchy |
14 IV | Piotr Kościelniak Numeryczne wyznaczanie rozmaitości stabilnych |
7 IV | Andrzej Hajda Efekt wrappingowy w dyskretnych liniowych układach dynamicznych |
31 III | Krzysztof Rybakowski Dynamics of parabolic equations on thin domains |
28 III | Bodil Branner Surgery in Holomorphic Dynamics |
24 III | Tomasz Wójtowicz Tranzytywność, gęste orbity i funkcje nieciągłe |
17 III | Wiesław Grygierzec Równania na momenty probabilistyczne dla równania dyfuzji z losowym polem unoszenia |
3 III | Wiesław Grygierzec Równania na momenty probabilistyczne dla równania dyfuzji z losowym polem unoszenia |
25 II | Agnieszka Foryś The dynamics of continuous maps of finite graphs through inverse limits , wg M. Barge'a i B. Diamonda |
18 II | Dariusz Jabłoński Własność persystencji |
28 I | Agnieszka Foryś The dynamics of continuous maps of finite graphs through inverse limits , wg M. Barge'a i B. Diamonda |
21 I | Dariusz Jabłoński Własność persystencji |
14 I | Dariusz Jabłoński Własność persystencji |
7 I | Dariusz Jabłoński Własność persystencji |
17 XII | Marcin Mazur The Gradient Structure of a Flow and Stability of Hyperbolic Diffeomorphisms |
10 XII | Marcin Mazur The Gradient Structure of a Flow and Stability of Hyperbolic Diffeomorphisms |
3 XII | Marcin Mazur The Gradient Structure of a Flow and Stability of Hyperbolic Diffeomorphisms |
26 XI | Dariusz Jabłoński Własność persystencji |
19 XI | Marcin Mazur The Gradient Structure of a Flow and Stability of Hyperbolic Diffeomorphisms |
5 XI | Artur Popławski On relation between transitivity in dynamical systems and topology of phase space |
29 X | Artur Popławski On relation between transitivity in dynamical systems and topology of phase space |
29 X | Jacek Tabor Czuła zależność od warunków początkowych, wg J. Hale'a i V. Lunela |
22 X | Jacek Tabor Czuła zależność od warunków początkowych, wg J. Hale'a i V. Lunela |
15 X | Jacek Tabor O przewidywaniu przyszłości |
28 V | Daniel Wilczak Chaos w równaniu Rösslera |
21 V | Joanna Jaroszewska Warunki zbiorów otwartych dla iterowanych układów funkcyjnych |
7 V | David A.R. N,1 potency of the radical of a group algebra |
30 IV | Monika Czaja On the behaviour of orbits of stable points, wg Koo |
30 IV | Joanna Jaroszewska Warunki zbiorów otwartych dla iterowanych układów funkcyjnych |
23 IV | Monika Czaja On the behaviour of orbits of stable points, wg Koo |
16 IV | Monika Czaja On the behaviour of orbits of stable points, wg Koo |
9 IV | Anatoliy K. O skończenie wymiarowych redukcjach układów dynamicznych na przestrzeniach funkcyjnych. Algebro-analityczna struktura całkowalności według twierdzenia Louville'la-Arnolda |
26 III | Piotr Kościelniak Recurrence and Shadowing Property, wg Chu i Koo |
19 III | Piotr Kościelniak Recurrence and Shadowing Property, wg Chu i Koo |
12 III | Radosław Zajšc Hiperboliczne metryki homeomorfizmów ekspansywnych, wg Sakai |
5 III | Szymon Janiszewski Metody numeryczne stochastycznych równań różniczkowych |
26 II | Szymon Janiszewski Metody numeryczne stochastycznych równań różniczkowych |
19 II | Jacek Szybowski Teoria macierzy połączeń dla układów dyskretnych, wg Bartłomiejczyka i Dzedzeja |
22 I | Jacek Szybowski Teoria macierzy połączeń dla układów dyskretnych, wg Bartłomiejczyka i Dzedzeja |
15 I | Marcin Kulczycki UPOTP (uniform pseudo-orbit tracing property) w C(M) i H(M), wg Gu Rongbao |
8 I | Kazimierz Goebel Otwarte problemy w metrycznej teorii punktow stałych |
18 XII | Jacek Tabor Oscylacje w przestrzeniach Banacha |
11 XII | Jean-Pierre Francoise Algebraic Bounds to the Number of Periodic Solutions of Abel Equations |
4 XII | Jacek Tabor Oscylacje w przestrzeniach Banacha |
27 XI | Jacek Tabor Oscylacje w przestrzeniach Banacha |
13 XI | Jacek Tabor Oscylacje w przestrzeniach Banacha |
6 XI | Kinga Stolot Paweł Horseshoes and the Conley Index Spectrum, wg M. Carbinatto, J. Kwapisza i K. Mischaikowa |
30 X | Kinga Stolot Paweł Horseshoes and the Conley Index Spectrum, wg M. Carbinatto, J. Kwapisza i K. Mischaikowa |
23 X | Artur Popławski Możliwość modelowania chaosu, wg C. Robinsona, cz. I |
16 X | Artur Popławski Możliwość modelowania chaosu, wg C. Robinsona, cz. I |
9 X | Michał Kwieciński Jak (nie) można zakodować kontinuum |
29 V | Radosław Zajšc O entropii topologicznej tranzytywnych odwzorowań odcinka, wg pracy Covena i Hidalgo |
15 V | Radosław Zajšc O entropii topologicznej tranzytywnych odwzorowań odcinka, wg pracy Covena i Hidalgo |
24 IV | Michał Borsuk Zagadnienia brzegowe dla równań eliptycznych 2-go rzędu w obszarach niegładkich |
17 IV | Stanisław Burys Pewna metoda dowodu twierdzenia Poincare-Bendixona |
3 IV | Kinga Stolot O rozbiciach Markowa w przypadku nieodwracalnym |
27 III | Kinga Stolot O rozbiciach Markowa w przypadku nieodwracalnym |
20 III | Kinga Stolot O rozbiciach Markowa w przypadku nieodwracalnym |
13 III | Szymon Janiszewski Dyskretyzacja a pewne własności równań różniczkowych w pobliżu punktów stałych,wg B.M. Garaya |
6 III | Szymon Janiszewski Dyskretyzacja a pewne własności równań różniczkowych w pobliżu punktów stałych,wg B.M. Garaya |
27 II | Marcin Mazur Hipercykliczne i chaotyczne semigrupy operatorów liniowych |
20 II | Marcin Mazur Hipercykliczne i chaotyczne semigrupy operatorów liniowych |
23 I | Marcin Mazur Hipercykliczne i chaotyczne semigrupy operatorów liniowych |
16 I | Marcin Mazur Hipercykliczne i chaotyczne semigrupy operatorów liniowych |
9 I | Marcin Mazur Hipercykliczne i chaotyczne semigrupy operatorów liniowych |
12 XII | Emilia Jankowska O rozdmuchaniach analitycznych pól wektorowych na płaszczyźnie |
5 XII | Dariusz Jabłoński Wyliczanie entropii za pomocą pseudo-orbit |
28 XI | Szymon Kodzis Własność śledzenia orbit i twierdzenie Kantorowicza, wg K.P. Hadelera |
21 XI | Piotr Zgliczyński Dynamika symboliczna w chaotycznych układach dynamicznych - czasem można pokazać więcej niż tylko semisprzężenie z przesunięciami Bernouliego |
14 XI | Joanna Jaroszewska O wymiarze zbiorów typu Cantora i hipotezie Eckmanna-Ruelle'a, wg Y. Pesina i H. Weissa |
7 XI | Joanna Jaroszewska O wymiarze zbiorów typu Cantora i hipotezie Eckmanna-Ruelle'a, wg Y. Pesina i H. Weissa |
31 X | Zbigniew Leśniak Problem topologicznego sprzężenia układów dynamicznych na płaszczyźnie nie posiadających punktów stacjonarnych |
24 X | Marek Izydorek Twierdzenia typu Bourgina-Yanga i ich zastosowanie do Z2-niezmienniczych układów hamiltonowskich |
30 V | Kinga Stolot O entropii odwzorowań odcinka |
25 IV | Szymon Kodzis Pewne własności bloków izolujących dla układów równań różniczkowych na płaszczyźnie |
18 IV | Piotr Zgliczyński Twierdzenie Szarkowskiego dla wielowymiarowych perturbacji odwzorowań wielowartościowych |
11 IV | Piotr Zgliczyński Twierdzenie Szarkowskiego dla wielowymiarowych perturbacji odwzorowań wielowartościowych |
4 IV | Wacław Marzantowicz Okresy minimalne homeomorfizmów powierzchni |
7 III | Jacek Szybowski Dynamika zbiorów niezmienniczych izolowanych, wg A. Szymczaka |
28 II | Jacek Szybowski Dynamika zbiorów niezmienniczych izolowanych, wg A. Szymczaka |
21 II | Paweł Pilarczyk Teoria macierzy połączeń dla rozkładów Morse'a |
24 I | Paweł Pilarczyk Teoria macierzy połączeń dla rozkładów Morse'a |
10 I | Jacek Tabor Iteracyjne równania liniowe, wg Sanga i Stewarta |
20 XII | Krzysztof Czarnowski Struktura topologiczna zbiorów rozwiązań pewnych równań różniczkowych |
13 XII | Tomasz Nowicki Przekształcenia niejednostajne rozciągające odcinka i własności miar niezmienniczych |
29 XI | Leszek Pieniążek Indeks Conleya w równaniach różniczkowych z opóźnionym argumentem |
22 XI | Leszek Pieniążek Indeks Conleya w równaniach różniczkowych z opóźnionym argumentem |
15 XI | Kinga Stolot Semi-hiperboliczność implikuje hiperboliczność |
8 XI | Marcin Mazur Topological Transitivity of the chain recurrent set implies topological transitivity of the whole space |
18 X | Roman Srzednicki O geometrycznym wykrywaniu rozwiązań okresowych równań nieautonomicznych |